S. M. Noble and A. D. Johnson, Genetics of Candida albicans, a diploid human fungal pathogen

, Annu Rev Genet, vol.41, pp.193-211, 2007.

B. J. Kullberg and M. C. Arendrup, Invasive Candidiasis, N Engl J Med, vol.373, pp.1445-56, 2015.

O. A. Cornely, M. Bassetti, and T. Calandra, ESCMID* guideline for the diagnosis and 380 management of Candida diseases 2012: non-neutropenic adult patients, Clin Microbiol, p.381

, Infect Off Publ Eur Soc Clin Microbiol Infect Dis, vol.18, pp.19-37, 2012.

P. G. Pappas, C. A. Kauffman, and D. R. Andes, Clinical Practice Guideline for the Management 383 of Candidiasis: 2016 Update by the Infectious Diseases Society of America, Clin Infect Dis Off

, Publ Infect Dis Soc Am, vol.62, pp.1-50, 2016.

M. Lackner, M. Tscherner, and M. Schaller, Positions and Numbers of FKS Mutations in

, Candida albicans Selectively Influence In Vitro and In Vivo Susceptibilities to Echinocandin

. Treatment, Antimicrob Agents Chemother, vol.58, pp.3626-3661, 2014.

H. M. Al-dorzi, H. Sakkijha, and R. Khan, Invasive Candidiasis in Critically Ill Patients: A 389

, Prospective Cohort Study in Two Tertiary Care Centers, J Intensive Care Med, vol.2018, p.390

M. C. Fisher, N. J. Hawkins, and D. Sanglard, Worldwide emergence of resistance to 392 antifungal drugs challenges human health and food security, Science, vol.360, pp.739-781, 2018.

M. A. Pfaller, S. A. Messer, and L. N. Woosley, Echinocandin and triazole antifungal 394 susceptibility profiles for clinical opportunistic yeast and mold isolates collected from 2010 characterization of geographic and temporal trends of antifungal resistance, J Clin Microbiol, vol.397, pp.2571-81, 2013.

S. G. Whaley, E. L. Berkow, and J. M. Rybak,

, Azole Antifungal Resistance in Candida albicans 399 and Emerging Non-albicans Candida Species, Front Microbiol, vol.7, 2017.

S. V. Balashov, S. Park, and D. S. Perlin, Assessing resistance to the echinocandin antifungal drug 402 caspofungin in Candida albicans by profiling mutations in FKS1, Antimicrob Agents 403 Chemother, vol.50, pp.2058-63, 2006.

A. Lohberger, A. T. Coste, and D. Sanglard, Distinct roles of Candida albicans drug resistance 405 transcription factors TAC1, MRR1, and UPC2 in virulence, Eukaryot Cell, vol.13, pp.127-169, 2014.

D. Sanglard and F. C. Odds, Resistance of Candida species to antifungal agents: molecular 407 mechanisms and clinical consequences, Lancet Infect Dis, vol.2, pp.73-85, 2002.

A. T. Coste, M. Karababa, and F. Ischer, TAC1, transcriptional activator of CDR genes, is a 409 new transcription factor involved in the regulation of Candida albicans ABC transporters 410 CDR1 and CDR2, Eukaryot Cell, vol.3, pp.1639-52, 2004.

F. Morio, R. H. Jensen, L. Pape, and P. , Molecular basis of antifungal drug resistance in 412 yeasts, Int J Antimicrob Agents, vol.50, pp.599-606, 2017.

P. M. Silver, B. G. Oliver, and T. C. White, Role of Candida albicans transcription factor Upc2p in 414 drug resistance and sterol metabolism, Eukaryot Cell, vol.3, pp.1391-1398, 2004.

B. G. Oliver, J. L. Song, and J. H. Choiniere, cis-Acting elements within the Candida albicans 416 ERG11 promoter mediate the azole response through transcription factor Upc2p, Eukaryot 417 Cell, vol.6, pp.450-60, 2007.

I. Accoceberry, A. Rougeron, and N. Biteau, A CTG Clade Candida Yeast Genetically 566 Engineered for the Genotype-Phenotype Characterization of Azole Antifungal Resistance in

. Human-pathogenic-yeasts, Antimicrob Agents Chemother, vol.62, 2017.

V. K. Vyas, M. I. Barrasa, and G. R. Fink, A Candida albicans CRISPR system permits genetic 570 engineering of essential genes and gene families, Sci Adv, vol.1, p.1500248, 2015.