S. Sazer and H. Schiessel, The biology and polymer physics underlying largescale chromosome organization, Traffic, vol.19, pp.87-104, 2018.

A. Badrinarayanan, T. B. Le, and M. T. Laub, Bacterial chromosome organization and segregation, Annu. Rev. Cell Dev. Biol, vol.31, pp.171-199, 2015.

S. Gruber, Multilayer chromosome organization through DNA bending, bridging and extrusion, Curr. Opin. Microbiol, vol.22, pp.102-110, 2014.

N. Kleckner, The bacterial nucleoid: nature, dynamics and sister segregation, Curr. Opin. Microbiol, vol.22, pp.127-137, 2014.

J. Livny, Y. Yamaichi, and M. K. Waldor, Distribution of centromere-like parS sites in bacteria: insights from comparative genomics, J. Bacteriol, vol.189, pp.8693-8703, 2007.

O. Rodionov, M. Lobocka, and M. Yarmolinsky, Silencing of genes flanking the P1 plasmid centromere, Science, vol.283, pp.546-549, 1999.

H. Murray, H. Ferreira, and J. Errington, The bacterial chromosome segregation protein Spo0J spreads along DNA from parS nucleation sites, Mol. Microbiol, vol.61, pp.1352-1361, 2006.

T. G. Graham, ParB spreading requires DNA bridging, Genes Dev, vol.28, pp.1228-1238, 2014.

C. P. Broedersz, Condensation and localization of the partitioning protein ParB on the bacterial chromosome, Proc. Natl Acad. Sci. USA, vol.111, pp.8809-8814, 2014.

M. Marbouty, Condensin-and replication-mediated bacterial chromosome folding and origin condensation revealed by Hi-C and superresolution imaging, Mol. Cell, vol.59, pp.588-602, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-01419993

A. Sanchez, Stochastic self-assembly of ParB proteins builds the bacterial DNA segregation apparatus, Cell Syst, vol.1, pp.163-173, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01191677

T. A. Leonard, P. J. Butler, and J. Löwe, Bacterial chromosome segregation: structure and DNA binding of the Soj dimer -a conserved biological switch, EMBO J, vol.24, pp.270-282, 2005.

H. Zhang and M. A. Schumacher, Structures of partition protein ParA with nonspecific DNA and ParB effector reveal molecular insights into principles governing Walker-box DNA segregation, Genes Dev, vol.31, pp.481-492, 2017.

A. G. Vecchiarelli, L. C. Hwang, and K. Mizuuchi, Cell-free study of F plasmid partition provides evidence for cargo transport by a diffusion-ratchet mechanism, Proc. Natl Acad. Sci. USA, vol.110, pp.1390-1397, 2013.

A. G. Vecchiarelli, K. C. Neuman, and K. Mizuuchi, A propagating ATPase gradient drives transport of surface-confined cellular cargo, Proc. Natl Acad. Sci. USA, vol.111, pp.4880-4885, 2014.

L. Hu, A. G. Vecchiarelli, K. Mizuuchi, K. C. Neuman, and J. Liu, Directed and persistent movement arises from mechanochemistry of the ParA/ParB system, Proc. Natl Acad. Sci. USA, vol.112, pp.7055-7064, 2015.

I. V. Surovtsev, M. Campos, and C. Jacobs-wagner, DNA-relay mechanism is sufficient to explain ParA-dependent intracellular transport and patterning of single and multiple cargos, Proc. Natl Acad. Sci. USA, vol.113, pp.7268-7276, 2016.

V. Lagage, F. Boccard, and I. Vallet-gely, Regional control of chromosome segregation in Pseudomonas aeruginosa, PLOS Genet, vol.12, p.1006428, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01411640

N. T. Tran, Permissive zones for the centromere-binding protein ParB on the Caulobacter crescentus chromosome, Nucleic Acids Res, vol.46, pp.1196-1209, 2018.

N. L. Sullivan, K. A. Marquis, and D. Z. Rudner, Recruitment of SMC by ParB-parS organizes the origin region and promotes efficient chromosome segregation, Cell, vol.137, pp.697-707, 2009.

X. Wang, Condensin promotes the juxtaposition of DNA flanking its loading site in Bacillus subtilis, Genes Dev, vol.29, pp.1661-1675, 2015.

N. T. Tran, M. T. Laub, and T. B. Le, SMC progressively aligns chromosomal arms in Caulobacter crescentus but is antagonized by convergent transcription, Cell Rep, vol.20, pp.2057-2071, 2017.

N. Cobbe and M. M. Heck, The evolution of SMC proteins: phylogenetic analysis and structural implications, Mol. Biol. Evol, vol.21, pp.332-347, 2004.

H. Niki, A. Jaffe, R. Imamura, T. Ogura, and S. Hiraga, The new gene mukB codes for a 177 kd protein with coiled-coil domains involved in chromosome partitioning of E. coli, EMBO J, vol.10, pp.183-193, 1991.

R. A. Britton, D. C. Lin, and A. D. Grossman, Characterization of a prokaryotic SMC protein involved in chromosome partitioning, Genes Dev, vol.12, pp.1254-1259, 1998.

R. B. Jensen and L. Shapiro, The Caulobacter crescentus smc gene is required for cell cycle progression and chromosome segregation, Proc. Natl Acad. Sci. USA, vol.96, pp.10661-10666, 1999.

F. Bürmann, An asymmetric SMC-kleisin bridge in prokaryotic condensin, Nat. Struct. Mol. Biol, vol.20, p.371, 2013.

M. L. Diebold-durand, Structure of full-length SMC and rearrangements required for chromosome organization, Mol. Cell, vol.67, p.335, 2017.

T. Terakawa, The condensin complex is a mechanochemical motor that translocates along DNA, Science, vol.358, pp.672-676, 2017.

M. Ganji, Real-time imaging of DNA loop extrusion by condensin, Science, vol.360, pp.102-105, 2018.

X. Wang, H. B. Brandão, T. B. Le, M. T. Laub, and D. Z. Rudner, Bacillus subtilis SMC complexes juxtapose chromosome arms as they travel from origin to terminus, Science, vol.355, pp.524-527, 2017.

A. Minnen, Control of Smc coiled coil architecture by the ATPase heads facilitates targeting to chromosomal ParB/parS and release onto flanking DNA, Cell Rep, vol.14, pp.2003-2016, 2016.

X. Wang, In vivo evidence for ATPase-dependent DNA translocation by the Bacillus subtilis SMC condensin complex, Mol. Cell, vol.71, pp.841-847, 2018.

A. Minnen, L. Attaiech, M. Thon, S. Gruber, and J. W. Veening, SMC is recruited to oriC by ParB and promotes chromosome segregation in Streptococcus pneumoniae, Mol. Microbiol, vol.81, pp.676-688, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02322974

S. Gruber and J. Errington, Recruitment of condensin to replication origin regions by ParB/SpoOJ promotes chromosome segregation in B. subtilis, Cell, vol.137, pp.685-696, 2009.

T. B. Le, M. V. Imakaev, L. A. Mirny, and M. T. Laub, High-resolution mapping of the spatial organization of a bacterial chromosome, Science, vol.342, pp.731-734, 2013.

X. Wang, X. Liu, C. Possoz, and D. J. Sherratt, The two Escherichia coli chromosome arms locate to separate cell halves, Genes Dev, vol.20, pp.1727-1731, 2006.

V. S. Lioy, Multiscale structuring of the E. coli chromosome by nucleoidassociated and condensin proteins, Cell, vol.172, pp.771-783, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02180787

S. Nolivos, MatP regulates the coordinated action of topoisomerase IV and MukBEF in chromosome segregation, Nat. Commun, vol.7, pp.10466-10466, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01893690

Z. M. Petrushenko, W. She, and V. V. Rybenkov, A new family of bacterial condensins, Mol. Microbiol, vol.81, pp.881-896, 2011.

K. Böhm, Novel chromosome organization pattern in Actinomycetalesoverlapping replication cycles combined with diploidy, vol.8, pp.511-00517, 2017.

C. Donovan, A. Schwaiger, R. Krämer, and M. Bramkamp, Subcellular localization and characterization of the ParAB system from Corynebacterium glutamicum, J. Bacteriol, vol.192, pp.3441-3451, 2010.

C. Donovan, B. Sieger, R. Krämer, and M. Bramkamp, A synthetic Escherichia coli system identifies a conserved origin tethering factor in Actinobacteria, Mol. Microbiol, vol.84, pp.105-116, 2012.

K. Ireton, N. W. Gunther, and A. D. Grossman, spo0J is required for normal chromosome segregation as well as the initiation of sporulation in Bacillus subtilis, J. Bacteriol, vol.176, pp.5320-5329, 1994.

P. S. Lee and A. D. Grossman, The chromosome partitioning proteins Soj (ParA) and Spo0J (ParB) contribute to accurate chromosome partitioning, separation of replicated sister origins, and regulation of replication initiation in Bacillus subtilis, Mol. Microbiol, vol.60, pp.853-869, 2006.

C. Donovan, A. Schauss, R. Krämer, and M. Bramkamp, Chromosome segregation impacts on cell growth and division site selection in Corynebacterium glutamicum, PLoS ONE, vol.8, p.55078, 2013.

J. Dekker, K. Rippe, M. Dekker, and N. Kleckner, Capturing chromosome conformation, Science, vol.295, pp.1306-1311, 2002.

M. Val, A checkpoint control orchestrates the replication of the two chromosomes of Vibrio cholerae, Sci. Adv, vol.2, p.1501914, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01309592

M. Ankerst, M. M. Breunig, H. Kriegel, and J. Sander, OPTICS: ordering points to identify the clustering structure, ACM SIGMOD Record, vol.2, pp.49-60, 1999.

. R-core-team, R: a langauge and environment for statistical computing. R Foundation Statistical Computing, 2014.

R. Lenarcic, Localisation of DivIVA by targeting to negatively curved membranes, EMBO J, vol.28, pp.2272-2282, 2009.

M. Letek, DivIVA is required for polar growth in the MreB-lacking rodshaped actinomycete Corynebacterium glutamicum, J. Bacteriol, vol.190, pp.3283-3292, 2008.

M. A. Schwartz and L. Shapiro, An SMC ATPase mutant disrupts chromosome segregation in Caulobacter, Mol. Microbiol, vol.82, pp.1359-1374, 2011.

M. Hirano and T. Hirano, Positive and negative regulation of SMC-DNA interactions by ATP and accessory proteins, EMBO J, vol.23, pp.2664-2673, 2004.

M. Hirano and T. Hirano, Opening closed arms: long-distance activation of SMC ATPase by hinge-DNA interactions, Mol. Cell, vol.21, pp.175-186, 2006.

T. Yang, HiCRep: assessing the reproducibility of Hi-C data using a stratum-adjusted correlation coefficient, Genome Res, vol.27, pp.1939-1949, 2017.

B. J. Eikmanns, E. Kleinertz, W. Liebl, and H. Sahm, A family of Corynebacterium glutamicum/Escherichia coli shuttle vectors for cloning, controlled gene expression, and promoter probing, Gene, vol.102, pp.93-98, 1991.

J. Cremer, L. Eggeling, and H. Sahm, Cloning the dapA dapB cluster of the lysine-secreting bacterium Corynebacterium glutamicum, Mol. Gen. Genet, vol.220, pp.478-480, 1990.

O. Kirchner and A. Tauch, Tools for genetic engineering in the amino acidproducing bacterium Corynebacterium glutamicum, J. Biotechnol, vol.104, pp.287-299, 2003.

D. J. Reinscheid, W. Kronemeyer, L. Eggeling, B. J. Eikmanns, and H. Sahm, Stable expression of hom-1-thrB in Corynebacterium glutamicum and its effect on the carbon flux to threonine and related amino acids, Appl. Environ. Microbiol, vol.60, pp.126-132, 1994.

M. Hassler, I. A. Shaltiel, and C. H. Haering, Towards a unified model of SMC complex function, Curr. Biol, vol.28, pp.1266-1281, 2018.

S. Doron, Systematic discovery of antiphage defense systems in the microbial pangenome, Science, vol.359, p.4120, 2018.

M. Sota, Shifts in the host range of a promiscuous plasmid through parallel evolution of its replication initiation protein, ISME J, vol.4, p.1568, 2010.

B. Maestro, J. M. Sanz, R. Díaz-orejas, and E. Fernández-tresguerres, Modulation of pPS10 host range by plasmid-encoded RepA initiator protein, J. Bacteriol, vol.185, pp.1367-1375, 2003.

L. De-gelder, J. M. Ponciano, P. Joyce, and E. M. Top, Stability of a promiscuous plasmid in different hosts: no guarantee for a long-term relationship, Microbiology, vol.153, pp.452-463, 2007.

S. Roth, Rad50-CARD9 interactions link cytosolic DNA sensing to IL-1? production, Nat. Immunol, vol.15, p.538, 2014.

L. Aragón, The Smc5/6 complex: new and old functions of the enigmatic longdistance relative, Annu. Rev. Genet, vol.52, pp.89-107, 2018.

A. Badrinarayanan, R. Reyes-lamothe, S. Uphoff, M. C. Leake, and D. J. Sherratt, In vivo architecture and action of bacterial structural maintenance of chromosome proteins, Science, vol.338, pp.528-531, 2012.

J. S. Woo, Structural studies of a bacterial condensin complex reveal ATP-dependent disruption of intersubunit interactions, Cell, vol.136, pp.85-96, 2009.

R. E. Debaugny, A conserved mechanism drives partition complex assembly on bacterial chromosomes and plasmids, Mol. Syst. Biol, vol.14, p.8516, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01926457

G. Karimova, J. Pidoux, A. Ullmann, and D. Ladant, A bacterial two-hybrid system based on a reconstituted signal transduction pathway, Proc. Natl Acad. Sci. USA, vol.95, pp.5752-5756, 1998.

A. Schäfer, Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum, Gene, vol.145, pp.69-73, 1994.

C. Keilhauer, L. Eggeling, and H. Sahm, Isoleucine synthesis in Corynebacterium glutamicum: molecular analysis of the ilvB-ilvN-ilvC operon, J. Bacteriol, vol.175, pp.5595-5603, 1993.

J. Mehla, J. H. Caufield, N. Sakhawalkar, and P. Uetz, A comparison of twohybrid approaches for detecting protein-protein interactions, Methods Enzymol, vol.586, pp.333-358, 2017.

J. Schindelin, Fiji: an open-source platform for biological-image analysis, Nat. Methods, vol.9, pp.676-682, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-02616466

A. Ducret, E. M. Quardokus, and Y. V. Brun, MicrobeJ, a tool for high throughput bacterial cell detection and quantitative analysis, Nat. Microbiol, vol.1, p.16077, 2016.

F. Ramírez, deepTools2: a next generation web server for deepsequencing data analysis, Nucleic Acids Res, vol.44, pp.160-165, 2016.

E. Afgan, The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update, Nucleic Acids Res, vol.44, pp.3-10, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01360125

R. Rasmussen, Rapid Cycle Real-Time PCR Methods and Applications, pp.21-34, 2001.

K. J. Livak and T. D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method, Methods, vol.25, pp.402-408, 2001.

A. Cournac, H. Marie-nelly, M. Marbouty, R. Koszul, and J. Mozziconacci, Normalization of a chromosomal contact map, BMC Genomics, vol.13, p.436, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-00769663

E. W. Deutsch, The ProteomeXchange consortium in 2017: supporting the cultural change in proteomics public data deposition, Nucleic Acids Res, vol.45, pp.1100-1106, 2017.