G. A. Poultsides, A. X. Zhu, M. A. Choti, and T. M. Pawlik, Intrahepatic cholangiocarcinoma, Surg. Clin. North Am, vol.90, pp.817-837, 2010.

S. Rizvi, S. A. Khan, C. L. Hallemeier, R. K. Kelley, and G. J. Gores, Cholangiocarcinomaevolving concepts and therapeutic strategies, Nat. Rev. Clin. Oncol, vol.15, pp.95-111, 2018.

J. Valle, Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer, N. Engl. J. Med, vol.362, pp.1273-1281, 2010.

A. E. Sirica, The role of cancer-associated myofibroblasts in intrahepatic cholangiocarcinoma, Nat. Rev. Gastroenterol. Hepatol, vol.9, pp.44-54, 2011.

A. E. Sirica and G. J. Gores, Desmoplastic stroma and cholangiocarcinoma: clinical implications and therapeutic targeting, Hepatol. Baltim. Md, vol.59, pp.2397-2402, 2014.

J. D. Wolchok, L. Rollin, and J. Larkin, Nivolumab and Ipilimumab in Advanced Melanoma, N. Engl. J. Med, vol.377, pp.2503-2504, 2017.

J. Brahmer, Nivolumab versus Docetaxel in Advanced Squamous-Cell Non-Small-Cell Lung Cancer, N. Engl. J. Med, vol.373, pp.123-135, 2015.

C. Robert, Pembrolizumab versus Ipilimumab in Advanced Melanoma, N. Engl. J. Med, vol.372, pp.2521-2532, 2015.

A. B. El-khoueiry and B. Sangro, Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial, Lancet Lond. Engl, vol.389, pp.2492-2502, 2017.

F. Sabbatino, PD-L1 and HLA Class I Antigen Expression and Clinical Course of the Disease in Intrahepatic Cholangiocarcinoma, Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res, vol.22, pp.470-478, 2016.

J. B. Andersen, Genomic and genetic characterization of cholangiocarcinoma identifies therapeutic targets for tyrosine kinase inhibitors, Gastroenterology, vol.142, p.15, 2012.

N. Oishi, Transcriptomic profiling reveals hepatic stem-like gene signatures and interplay of miR-200c and epithelial-mesenchymal transition in intrahepatic cholangiocarcinoma, Hepatol. Baltim. Md, vol.56, pp.1792-1803, 2012.

D. Sia, Integrative molecular analysis of intrahepatic cholangiocarcinoma reveals 2 classes that have different outcomes, Gastroenterology, vol.144, pp.829-840, 2013.

W. Chan-on, M. Nairismägi, C. K. Ong, and W. K. Lim, Exome sequencing identifies distinct mutational patterns in liver fluke-related and non-infection-related bile duct cancers, Accepted Article, vol.14, pp.1474-1478, 2013.

Q. Gao, Y. Zhao, and X. Wang, Activating mutations in PTPN3 promote cholangiocarcinoma cell proliferation and migration and are associated with tumor recurrence in patients, Gastroenterology, vol.146, pp.1397-1407, 2014.

M. J. Borad, M. D. Champion, and J. B. Egan, Integrated genomic characterization reveals novel, therapeutically relevant drug targets in FGFR and EGFR pathways in sporadic intrahepatic cholangiocarcinoma, PLoS Genet, vol.10, p.1004135, 2014.

S. Zou, Mutational landscape of intrahepatic cholangiocarcinoma, Nat. Commun, vol.5, p.5696, 2014.

N. Razumilava, G. J. Gores, and . Cholangiocarcinoma, Lancet Lond. Engl, vol.383, pp.2168-2179, 2014.

F. Farshidfar, Integrative Genomic Analysis of Cholangiocarcinoma Identifies Distinct IDH-Mutant Molecular Profiles, Cell Rep, vol.19, pp.2878-2880, 2017.

A. Jusakul, Whole-Genome and Epigenomic Landscapes of Etiologically Distinct Subtypes of Cholangiocarcinoma, Cancer Discov, vol.7, pp.1116-1135, 2017.

Y. Arai, Fibroblast growth factor receptor 2 tyrosine kinase fusions define a unique molecular subtype of cholangiocarcinoma, Hepatol. Baltim. Md, vol.59, pp.1427-1434, 2014.

S. Chevrier, An Immune Atlas of Clear Cell Renal Cell Carcinoma, Cell, vol.169, pp.736-749, 2017.

I. Tirosh and B. Izar, Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq, Science, vol.352, pp.189-196, 2016.

A. M. Newman and C. L. Liu, Robust enumeration of cell subsets from tissue expression profiles, Nat. Methods, vol.12, pp.453-457, 2015.

T. Gong and J. D. Szustakowski, DeconRNASeq: a statistical framework for deconvolution of heterogeneous tissue samples based on mRNA-Seq data, Bioinforma. Oxf. Engl, vol.29, pp.1083-1085, 2013.

E. Becht, Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression, Genome Biol, vol.17, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01398093

S. L. Friedman, Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver, Physiol. Rev, vol.88, pp.125-172, 2008.

N. Kang, G. J. Gores, and V. H. Shah, Hepatic stellate cells: partners in crime for liver metastases?, Hepatol. Baltim. Md, vol.54, pp.707-713, 2011.

W. Boers, Transcriptional profiling reveals novel markers of liver fibrogenesis: gremlin and insulin-like growth factor-binding proteins, J. Biol. Chem, vol.281, pp.16289-16295, 2006.

M. Darnaud, D. Santos, A. Gonzalez, and P. , Enteric Delivery of Regenerating Family Member 3 alpha Alters the Intestinal Microbiota and Controls Inflammation in Mice With Colitis, Gastroenterology, vol.154, pp.1009-1023, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02626272

J. M. Taube, Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy, Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res, vol.20, pp.5064-5074, 2014.

H. Nakamura, Genomic spectra of biliary tract cancer, Nat. Genet, vol.47, pp.1003-1010, 2015.

D. Santos and A. , Identification of cellular targets in human intrahepatic cholangiocarcinoma using laser microdissection and accurate mass and time tag proteomics
URL : https://hal.archives-ouvertes.fr/inserm-00515623

, Mol. Cell. Proteomics MCP, vol.9, 1991.

J. Vaquero, Epithelial-mesenchymal transition in cholangiocarcinoma: From clinical evidence to regulatory networks, J. Hepatol, vol.66, pp.424-441, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01377000

Y. Nakanuma and Y. Kakuda, Pathologic classification of cholangiocarcinoma: New concepts, Best Pract Res Clin Gastroenterol, vol.29, pp.277-93, 2015.

C. S. Sigel, Intrahepatic Cholangiocarcinomas Have Histologically and Immunophenotypically Distinct Small and Large Duct Patterns, Am J Surg Pathol, vol.42, pp.1334-1345, 2018.

A. Albillos, M. Lario, and M. Álvarez-mon, Cirrhosis-associated immune dysfunction: distinctive features and clinical relevance, J. Hepatol, vol.61, pp.1385-1396, 2014.

R. F. Sweis, Molecular Drivers of the Non-T-cell-Inflamed Tumor Microenvironment in Urothelial Bladder Cancer, Cancer Immunol. Res, vol.4, pp.563-568, 2016.

J. J. Luke, R. Bao, R. F. Sweis, S. Spranger, and T. F. Gajewski, WNT/?-catenin Pathway Activation Correlates with Immune Exclusion across Human Cancers, Clin. Cancer Res. Off

, J. Am. Assoc. Cancer Res, vol.25, pp.3074-3083, 2019.

J. Guinney, R. Dienstmann, X. Wang, A. De-reyniès, A. Schlicker et al., The consensus molecular subtypes of colorectal cancer, Nat. Med, vol.21, pp.1350-1356, 2015.

A. Kamoun, A Consensus Molecular Classification of Muscle-invasive Bladder Cancer

, Eur. Urol, 2019.

E. Becht, Immune and Stromal Classification of Colorectal Cancer Is Associated with Molecular Subtypes and Relevant for Precision Immunotherapy, Clin. Cancer Res. Off. J. Am

. Assoc, Cancer Res, 2016.

B. Saha, K. Kodys, and G. Szabo, Hepatitis C Virus-Induced Monocyte Differentiation Into Polarized M2 Macrophages Promotes Stellate Cell Activation via TGF-?, Cell. Mol. Gastroenterol. Hepatol, vol.2, pp.302-316, 2016.

D. S. Chen and I. Mellman, Elements of cancer immunity and the cancer-immune set point, Nature, vol.541, pp.321-330, 2017.

J. Galon and D. Bruni, Approaches to treat immune hot, altered and cold tumours with combination immunotherapies, Nat. Rev. Drug Discov, 2019.

Y. Zhu, CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models, Cancer Res, vol.74, pp.5057-5069, 2014.

, Accepted Article