A. P. West, G. S. Shadel, and S. Ghosh, Mitochondria in innate immune responses

J. Huang and J. H. Brumell, Bacteria-autophagy interplay: a battle for survival, Nat Rev Microbiol, vol.12, pp.101-115, 2014.

T. C. Kunz, F. Viana, C. Buchrieser, and P. Escoll, Manipulation of Autophagy by Bacterial Pathogens Impacts Host Immunity, Curr Issues Mol Biol, vol.25, pp.81-98, 2018.

P. Escoll, S. Mondino, M. Rolando, and C. Buchrieser, Targeting of host organelles by pathogenic bacteria: a sophisticated subversion strategy, Nat Rev Micro, vol.14, pp.5-19, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01326394

J. Lai, S. Luo, and L. Ho, disintegration of complex II succinate:ubiquinone oxidoreductase links pH changes to oxidative stress for apoptosis induction, Cell Death Differ, vol.156, pp.338-387, 2011.

L. Silva-da-costa, P. Da-silva, A. P. Da-poian, A. T. El-bacha, and T. , Mitochondrial bioenergetic alterations in mouse neuroblastoma cells infected with Sindbis virus: implications to viral replication and neuronal death, PLoS One, vol.7, p.33871, 2012.

C. Claus, K. Schonefeld, D. Hubner, S. Chey, U. Reibetanz et al., Activity increase in respiratory chain complexes by rubella virus with marginal induction of oxidative stress, J Virol, vol.87, pp.8481-92, 2013.

C. Gleason, S. Huang, L. F. Thatcher, R. C. Foley, C. R. Anderson et al., Mitochondrial complex II has a key role in mitochondrial-derived reactive oxygen species influence on plant stress gene regulation and defense, Proc Natl Acad Sci U S A, vol.108, pp.10768-73, 2011.

C. Qu, S. Zhang, W. Wang, M. Li, Y. Wang et al.,

, Mitochondrial electron transport chain complex III sustains hepatitis E virus replication and represents an antiviral target, FASEB J, vol.33, pp.1008-1027, 2019.

C. P. Baines and M. Gutiérrez-aguilar, The still uncertain identity of the channel-forming unit(s) of the mitochondrial permeability transition pore

, Cell Calcium, vol.73, pp.121-151, 2018.

L. Ebermann, S. Wika, I. Klumpe, E. Hammer, K. Klingel et al., The mitochondrial respiratory chain has a critical role in the antiviral process in Coxsackievirus B3-induced myocarditis, Lab Invest, vol.92, pp.125-159, 2012.

J. Wen and N. J. Garg, Mitochondrial complex III defects contribute to inefficient respiration and ATP synthesis in the myocardium of Trypanosoma cruzi-infected mice, Antioxid Redox Signal, vol.12, pp.27-37, 2010.

L. A. Sena, S. Li, A. Jairaman, M. Prakriya, T. Ezponda et al., Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling, Immunity, vol.38, pp.225-261, 2013.

M. K. Tripathy and D. Mitra, Differential modulation of mitochondrial OXPHOS system during HIV-1 induced T-cell apoptosis: up regulation of Complex-IV subunit COX-II and its possible implications, Apoptosis, vol.15, pp.28-40, 2010.

Y. Zhao, X. Sun, X. Nie, L. Sun, T. Tang et al., COX5B regulates MAVS-mediated antiviral signaling through interaction with ATG5 and repressing ROS production, PLoS Pathogens, vol.8, p.1003086, 2012.

J. L. Jacobs and C. B. Coyne, Mechanisms of MAVS regulation at the mitochondrial membrane, J Mol Biol, vol.425, pp.5009-5028, 2013.

R. B. Seth, L. Sun, C. Ea, and Z. J. Chen, Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3, Cell, vol.122, pp.669-82, 2005.

D. Galati, S. Srinivasan, H. Raza, S. K. Prabu, M. Hardy et al., Role of nuclear-encoded subunit Vb in the assembly and stability of cytochrome c

, oxidase complex: implications in mitochondrial dysfunction and ROS production, Immunometabolism, vol.1, pp.439-488, 2009.

G. Syn, D. Anderson, J. M. Blackwell, and S. E. Jamieson, Toxoplasma gondii Infection Is Associated with Mitochondrial Dysfunction in-Vitro, Front Cell Infect Microbiol, vol.7, p.512, 2017.

R. J. Levy, C. Vijayasarathy, N. R. Raj, N. G. Avadhani, and C. S. Deutschman, Competitive and noncompetitive inhibition of myocardial cytochrome C oxidase in sepsis

, Shock, vol.21, pp.110-114, 2004.

I. Lee and M. Hüttemann, Energy crisis: the role of oxidative phosphorylation in acute inflammation and sepsis, Biochim Biophys Acta, vol.1842, pp.1579-86, 2014.

N. Arulkumaran, C. S. Deutschman, M. R. Pinsky, B. Zuckerbraun, P. T. Schumacker et al., Mitochondrial function in sepsis, Shock, vol.45, pp.271-81, 2016.

L. Lorente, M. M. Martín, E. López-gallardo, J. Ferreres, J. Solé-violán et al., Septic patients with mitochondrial DNA haplogroup JT have higher respiratory complex IV activity and survival rate, J Crit Care, vol.33, pp.95-104, 2016.

C. Chinopoulos and V. Adam-vizi, Mitochondria as ATP consumers in cellular pathology, Biochim Biophys Acta, vol.1802, pp.221-228, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00543007

S. Jamwal, M. K. Midha, H. N. Verma, A. Basu, K. Rao et al., Characterizing virulence-specific perturbations in the mitochondrial function of macrophages infected with Mycobacterium tuberculosis, Sci Rep, vol.3, p.1328, 2013.

M. Plataki, S. J. Cho, R. M. Harris, H. Huang, H. S. Yun et al.,

, Mitochondrial Dysfunction in Aged Macrophages and Lung during Primary Streptococcus pneumoniae, Infection is Improved with Pirfenidone. Sci Rep, vol.9, p.971, 2019.

L. Ren, S. Ding, Y. Song, B. Li, M. Ramanathan et al., Profiling of rotavirus 3'UTR-binding proteins reveals the ATP synthase subunit ATP5B as a host factor that supports late-stage virus replication, J Biol Chem, vol.294, pp.5993-6006, 2019.

Á. Gellért, T. Pósa, A. Fábián, L. Szabó, K. Bóka et al., A single point mutation on the cucumber mosaic virus surface induces an unexpected and strong interaction with the F1 complex of the ATP synthase in Nicotiana clevelandii plants, Virus Res, vol.251, pp.47-55, 2018.

G. Vyatkina, V. Bhatia, A. Gerstner, J. Papaconstantinou, and N. Garg, Impaired mitochondrial respiratory chain and bioenergetics during chagasic cardiomyopathy development, Biochim Biophys Acta, vol.1689, pp.162-73, 2004.

M. A. Asnicar, O. Henegariu, M. M. Shaw, M. P. Goheen, M. S. Bartlett et al., Alteration in expression of the rat mitochondrial ATPase 6 gene during Pneumocystis carinii infection, BMC Microbiol, vol.1, p.8, 2001.

C. Lin, J. Gu, H. Wang, J. Zhou, J. Li et al., Caspase-Dependent Apoptosis Induction via Viral Protein ORF4 of Porcine Circovirus 2 Binding to

, Mitochondrial Adenine Nucleotide Translocase 3, J Virol, vol.92, 2018.

, Immunometabolism, vol.1, p.190011, 2019.

Y. Wang, M. Santerre, I. Tempera, K. Martin, R. Mukerjee et al., HIV-1 Vpr disrupts mitochondria axonal transport and accelerates neuronal aging

, Neuropharmacology, vol.117, pp.364-75, 2017.

X. Guo, Y. Huang, Y. Qi, Z. Liu, Y. Ma et al., Human cytomegalovirus miR-UL36-5p inhibits apoptosis via downregulation of adenine nucleotide translocator 3 in cultured cells, Arch Virol, vol.160, pp.2483-90, 2015.

M. Tanaka, T. Sata, and Y. Kawaguchi, The product of the Herpes simplex virus 1 UL7 gene interacts with a mitochondrial protein, adenine nucleotide translocator 2, Virol J, vol.5, p.125, 2008.

S. Rousset, Y. Emre, O. Join-lambert, C. Hurtaud, D. Ricquier et al., The uncoupling protein 2 modulates the cytokine balance in innate immunity, Cytokine, vol.35, pp.135-177, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00136168

T. Kizaki, K. Suzuki, Y. Hitomi, N. Taniguchi, D. Saitoh et al., Uncoupling protein 2 plays an important role in nitric oxide production of lipopolysaccharide-stimulated macrophages, Proc Natl Acad Sci U S A, vol.99, pp.9392-9399, 2002.

Z. B. Andrews, B. Horvath, C. J. Barnstable, J. Elsworth, J. Elseworth et al., Uncoupling protein-2 is critical for nigral dopamine cell survival in a mouse, vol.60, pp.117-140, 2019.

C. Chinopoulos and T. N. Seyfried, Mitochondrial Substrate-Level Phosphorylation as Energy Source for Glioblastoma: Review and Hypothesis, ASN Neuro, vol.10, p.1759091418818261, 2018.

C. Chinopoulos, A. A. Gerencser, M. Mandi, K. Mathe, B. Töröcsik et al., Forward operation of adenine nucleotide translocase during F0F1-ATPase reversal: critical role of matrix substrate-level phosphorylation, FASEB J, vol.24, pp.2405-2421, 2010.

B. Németh, J. Doczi, D. Csete, G. Kacso, D. Ravasz et al., Abolition of mitochondrial substrate-level phosphorylation by itaconic acid produced by LPS-induced Irg1 expression in cells of murine macrophage lineage, Immunometabolism, vol.1, pp.286-300, 2016.

T. I. Sheikh, T. Adam, and I. Qadri, Upregulated hepatic expression of mitochondrial PEPCK triggers initial gluconeogenic reactions in the HCV-3 patients, Asian Pac J Trop Med, vol.8, pp.618-641, 2015.

L. Wu, J. Peng, Y. Ma, F. He, X. Deng et al., Leukodystrophy associated with mitochondrial complex I deficiency due to a novel mutation in the NDUFAF1

, gene. Mitochondrial DNA, vol.27, pp.1034-1041, 2016.

C. B. Jackson, J. Nuoffer, D. Hahn, H. Prokisch, B. Haberberger et al., Mutations in SDHD lead to autosomal recessive encephalomyopathy and isolated mitochondrial complex II deficiency, J Med Genet, vol.51, pp.170-175, 2014.

C. Dallabona, T. Abbink, R. Carrozzo, A. Torraco, A. Legati et al., LYRM7 mutations cause a multifocal cavitating leukoencephalopathy with distinct MRI appearance, Brain, vol.139, pp.782-94, 2016.

K. Hallmann, A. P. Kudin, G. Zsurka, C. Kornblum, J. Reimann et al., Loss of the smallest subunit of cytochrome c oxidase, COX8A, causes Leigh-like syndrome and epilepsy, Brain, vol.139, pp.338-383, 2016.

G. H. Renkema, G. Visser, F. Baertling, L. T. Wintjes, V. M. Wolters et al., Mutated PET117 causes complex IV deficiency and is associated with neurodevelopmental regression and medulla oblongata lesions, Hum Genet, vol.136, pp.759-69, 2017.

L. De-meirleir, S. Seneca, W. Lissens, D. Clercq, I. Eyskens et al., Respiratory chain complex V deficiency due to a mutation in the assembly gene ATP12, J Med Genet, vol.41, pp.120-124, 2004.

A. Ghanizadeh, M. Berk, H. Farrashbandi, A. Shoushtari, A. Villagonzalo et al., Targeting the mitochondrial electron transport chain in autism, a systematic review and synthesis of a novel therapeutic approach, Mitochondrion, vol.13, pp.515-524, 2013.

J. Rohlena, L. Dong, S. J. Ralph, and J. Neuzil, Anticancer drugs targeting the mitochondrial electron transport chain, Antioxid Redox Signal, vol.15, pp.2951-74, 2011.

P. Escoll, L. Platon, and C. Buchrieser, Roles of Mitochondrial Respiratory Complexes during Infection
URL : https://hal.archives-ouvertes.fr/pasteur-02593579

, Immunometabolism, vol.1, p.190011, 2019.

, Immunometabolism, vol.1, p.190011, 2019.