M. H. Saier, I. T. Paulsen, M. K. Sliwinski, S. S. Pao, R. A. Skurray et al., Evolutionary origins of multidrug and drug-specific efflux pumps in bacteria, FASEB J, vol.12, pp.265-274, 1998.

H. Nikaido, Multidrug Resistance in Bacteria, Annu. Rev. Biochem, vol.78, pp.119-146, 2009.

J. L. Martinez, M. B. Sánchez, L. Martínez-solano, A. Hernandez, L. Garmendia et al., Functional role of bacterial multidrug efflux pumps in microbial natural ecosystems, FEMS Microbiol. Rev, vol.33, pp.430-449, 2009.

L. J. Piddock, Clinically Relevant chromosomally encoded nultidrug resistance efflux pumps in bacteria, Clin. Microbiol. Rev, vol.19, pp.382-402, 2006.

H. Nikaido and J. M. Pagès, Broad-specificity efflux pumps and their role in multidrug resistance of Gram-negative bacteria, FEMS Microbiol. Rev, vol.36, pp.340-363, 2012.

X. Z. Li, P. Plésiat, and H. Nikaido, The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria, Clin. Microbiol. Rev, vol.28, pp.337-418, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01695304

D. Du, X. Wang-kan, A. Neuberger, H. W. Van-veen, K. M. Pos et al., Multidrug efflux pumps: Structure, function and regulation, Nat. Rev. Microbiol, vol.16, pp.523-539, 2018.

A. A. Neyfakh, Mystery of multidrug transporters: The answer can be simple, Mol. Microbiol, vol.44, pp.1123-1130, 2002.

I. T. Paulsen, Multidrug efflux pumps and resistance: Regulation and evolution, Curr. Opin. Microbiol, vol.6, pp.446-451, 2003.

L. J. Piddock, Multidrug-Resistance efflux pumps-Not just for resistance, Nat. Rev. Microbiol, vol.4, pp.629-636, 2006.

C. Alvarez-ortega, J. Olivares, and J. L. Martínez, RND multidrug efflux pumps: What are they good for? Front, 2007.

P. Blanco, S. Hernando-amado, J. A. Reales-calderon, F. Corona, F. Lira et al., Bacterial multidrug efflux pumps: Much more than antibiotic resistance determinants

J. Sun, Z. Deng, and A. Yan, Bacterial multidrug efflux pumps: Mechanisms, physiology and pharmacological exploitations, Biochem. Biophys. Res. Commun, vol.453, pp.254-267, 2014.

A. Leuzzi, M. L. Di-martino, R. Campilongo, M. Falconi, M. Barbagallo et al., Multifactor regulation of the MdtJI polyamine transporter in Shigella, PLoS ONE, vol.10, 2015.

M. Alcalde-rico, S. Hernando-amado, P. Blanco, and J. L. Martínez, Multidrug Efflux Pumps at the Crossroad between Antibiotic Resistance and Bacterial Virulence, Front. Microbiol, vol.7, 1483.

Q. Ren and I. T. Paulsen, Comparative analyses of fundamental differences in membrane transport capabilities in prokaryotes and eukaryotes, PLoS Comput. Biol, 2005.

K. T. Konstantinidis and J. M. Tiedje, Trends between gene content and genome size in prokaryotic species with larger genomes, Proc. Natl. Acad. Sci, vol.101, pp.3160-3165, 2004.

J. P. Mccutcheon and N. A. Moran, Extreme genome reduction in symbiotic bacteria, Nat. Rev. Microbiol, vol.10, pp.13-26, 2011.

G. Prosseda, M. L. Di-martino, R. Campilongo, R. Fioravanti, G. Micheli et al., Shedding of genes that interfere with the pathogenic lifestyle: The Shigella model, Res. Microbiol, vol.163, pp.399-406, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-00947763

K. A. Hassan, Q. Liu, L. D. Elbourne, I. Ahmad, D. Sharples et al., Pacing across the membrane: The novel PACE family of efflux pumps is widespread in Gram-negative pathogens, Res. Microbiol, vol.169, pp.450-454, 2018.

J. A. Delmar and E. W. Yu, The AbgT family: A novel class of antimetabolite transporters, Protein Sci, vol.25, pp.322-337, 2016.

J. M. Blair, G. E. Richmond, and L. J. Piddock, Multidrug efflux pumps in Gram-negative bacteria and their role in antibiotic resistance, Future Microbiol, vol.9, pp.1165-1177, 2014.

P. Hinchliffe, N. P. Greene, N. G. Paterson, A. Crow, C. Hughes et al., Structure of the periplasmic adaptor protein from a major facilitator superfamily (MFS) multidrug efflux pump, FEBS Lett, vol.588, pp.3147-3153, 2014.

D. Du, H. W. Van-veen, S. Murakami, K. M. Pos, and B. F. Luisi, Structure, mechanism and cooperation of bacterial multidrug transporters, Curr. Opin. Struct. Biol, vol.33, pp.76-91, 2015.

M. F. Symmons, R. L. Marshall, and V. N. Bavro, Architecture and roles of periplasmic adaptor proteins in tripartite efflux assemblies, Front. Microbiol, vol.6, 2015.

X. H. Li and J. H. Lee, Antibiofilm agents: A new perspective for antimicrobial strategy, J. Microbiol, vol.55, pp.753-766, 2017.

E. M. Quistgaard, C. Löw, F. Guettou, and P. Nordlund, Understanding transport by the major facilitator superfamily (MFS): Structures pave the way, Nat. Rev. Mol. Cell Biol, vol.17, pp.123-132, 2016.

A. Neuberger, D. Du, and B. F. Luisi, Structure and mechanism of bacterial tripartite efflux pumps, Res. Microbiol, vol.169, pp.401-413, 2018.

P. Hinchliffe, M. F. Symmons, C. Hughes, and V. Koronakis, Structure and operation of bacterial tripartite pumps, Annu. Rev. Microbiol, vol.67, pp.221-242, 2013.

S. S. Pao, I. T. Paulsen, M. H. Saier, and . Jr, Major facilitator superfamily. Microbiol, Mol. Biol. Rev, vol.62, pp.1-34, 1998.

N. Fluman and E. Bibi, Bacterial multidrug transport through the lens of the major facilitator superfamily, Biochim. Biophys. Acta, vol.1794, pp.738-747, 2009.

V. S. Reddy, M. A. Shlykov, R. Castillo, E. I. Sun, M. H. Saier et al., The major facilitator superfamily (MFS) revisited, FEBS J, vol.279, pp.2022-2035, 2012.

Y. Yin, X. He, P. Szewczyk, T. Nguyen, and G. Chang, Structure of the multidrug transporter EmrD from Escherichia coli, Science, vol.312, pp.741-744, 2006.

C. J. Law, P. C. Maloney, and D. N. Wang, Ins and outs of major facilitator superfamily antiporters, Annu. Rev. Microbiol, vol.62, pp.289-305, 2008.

V. Koronakis, J. Eswaran, and C. Hughes, Structure and function of TolC: The bacterial exit duct for proteins and drugs, Annu. Rev. Biochem, vol.73, pp.467-489, 2004.

Y. W. Huang, R. M. Hu, F. Y. Chu, H. R. Lin, and T. C. Yang, Characterization of a major facilitator superfamily (MFS) tripartite efflux pump EmrCABsm from Stenotrophomonas maltophilia, J. Antimicrob. Chemother, vol.68, pp.2498-2505, 2013.

K. C. Barroso, M. Previato-mello, B. B. Batista, J. H. Batista, and J. F. Da-silva-neto, EmrR-Dependent Upregulation of the Efflux Pump EmrCAB Contributes to Antibiotic Resistance in Chromobacterium violaceum, Front. Microbiol, vol.9, 2018.

S. Grkovic, M. H. Brown, and R. A. Skurray, Regulation of bacterial drug export systems, Microbiol. Mol. Biol. Rev, vol.66, pp.671-701, 2002.

Z. Xu and A. Yan, Multidrug efflux systems in microaerobic and anaerobic bacteria, Antibiotics, vol.4, pp.379-396, 2015.

O. Lomovskaya, K. Lewis, and A. Matin, EmrR is a negative regulator of the Escherichia coli multidrug resistance pump EmrAB, J. Bacteriol, vol.177, pp.2328-2334, 1995.

A. Xiong, A. Gottman, C. Park, M. Baetens, S. Pandza et al., The EmrR protein represses the Escherichia coli emrRAB multidrug resistance operon by directly binding to its promoter region, Antimicrob. Agents Chemother, vol.44, pp.2905-2907, 2000.

R. C. Woolley, G. Vediyappan, M. Anderson, M. Lackey, B. Ramasubramanian et al., Characterization of the Vibrio cholerae vceCAB multiple-drug resistance efflux operon in Escherichia coli, J. Bacteriol, vol.187, pp.5500-5503, 2005.

L. Federici, D. Du, F. Walas, H. Matsumura, J. Fernandez-recio et al., The crystal structure of the outer membrane protein VceC from the bacterial pathogen Vibrio cholerae at 1.8 Å Resolution, J. Biol. Chem, vol.280, pp.15307-15314, 2005.

M. I. Borges-walmsley, D. Du, K. S. Mckeegan, G. J. Sharples, and A. R. Walmsley, VceR regulates the vceCAB drug efflux pump operon of Vibrio cholerae by alternating between mutually exclusive conformations that bind either drugs or promoter DNA, J. Mol. Biol, vol.349, pp.387-400, 2005.

E. H. Lee and W. M. Shafer, The farAB-encoded efflux pump mediates resistance of gonococci to long-chained antibacterial fatty acids, Mol. Microbiol, vol.33, pp.839-845, 1999.

E. H. Lee, C. Rouquette-loughlin, J. P. Folster, and W. M. Shafer, FarR regulates the farAB-encoded efflux pump of Neisseria gonorrhoeae via an MtrR regulatory mechanism, J. Bacteriol, vol.185, pp.7145-7152, 2003.

E. H. Lee, S. A. Hill, R. Napier, and W. M. Shafer, Integration Host Factor is required for FarR repression of the farAB-encoded efflux pump of Neisseria gonorrhoeae, Mol. Microbiol, vol.60, pp.1381-1400, 2006.

G. Prosseda, M. Falconi, M. Giangrossi, C. O. Gualerzi, G. Micheli et al., The virF promoter in Shigella: More than just a curved DNA stretch, Mol. Microbiol, vol.51, pp.523-537, 2004.

G. Prosseda, A. Mazzola, M. L. Di-martino, D. Tielker, G. Micheli et al., A temperature-induced narrow DNA curvature range sustains the maximum activity of a bacterial promoter in vitro, Biochemistry, vol.49, pp.2778-2785, 2010.

S. J. Quillin, K. T. Schwartz, and J. H. Leber, The novel Listeria monocytogenes bile sensor BrtA controls expression of the cholic acid efflux pump MdrT, Mol. Microbiol, vol.81, pp.129-142, 2011.

G. T. Crimmins, A. A. Herskovits, K. Rehder, K. E. Sivick, P. Lauer et al., Listeria monocytogenes multidrug resistance transporters activate a cytosolic surveillance pathway of innate immunity, Proc. Natl. Acad. Sci, vol.105, pp.10191-10196, 2008.

J. M. Tennent, B. R. Lyon, M. T. Gillespie, J. W. May, and R. A. Skurray, Cloning and expression of Staphylococcus aureus plasmid-mediated quaternary ammonium resistance in Escherichia coli, Antimicrob. Agents Chemother, vol.27, pp.79-83, 1985.

Q. C. Truong-bolduc, R. A. Villet, Z. A. Estabrooks, and D. C. Hooper, Native efflux pumps contribute resistance to antimicrobials of skin and the ability of Staphylococcus aureus to colonize skin, J. Infect. Dis, vol.209, pp.1485-1493, 2014.

Q. C. Truong-bolduc, G. R. Bolduc, H. Medeiros, J. M. Vyas, Y. Wang et al., Role of the Tet38 Efflux Pump in Staphylococcus aureus Internalization and Survival in Epithelial Cells, Infect. Immun, vol.83, pp.4362-4372, 2015.

Q. C. Truong-bolduc and D. C. Hooper, Phosphorylation of MgrA and its effect on expression of the NorA and NorB efflux pumps of Staphylococcus aureus, J. Bacteriol, vol.192, pp.2525-2534, 2010.

Y. Ding, Y. Onodera, J. C. Lee, and D. C. Hooper, NorB, an efflux pump in Staphylococcus aureus strain MW2, contributes to bacterial fitness in abscesses, J. Bacteriol, vol.190, pp.7123-7129, 2008.

X. He and J. Ahn, Differential gene expression in planktonic and biofilm cells of multiple antibiotic-resistant Salmonella Typhimurium and Staphylococcus aureus, FEMS Microbiol. Lett, vol.325, pp.180-188, 2011.

Y. Ding, Y. Fu, J. C. Lee, and D. C. Hooper, Staphylococcus aureus NorD, a putative efflux pump coregulated with the Opp1 oligopeptide permease, contributes selectively to fitness in vivo, J. Bacteriol, vol.194, pp.6586-6593, 2012.

M. Ahmed, L. Lyass, P. N. Markham, S. S. Taylor, N. Vázquez-laslop et al., Two highly similar multidrug transporters of Bacillus subtilis whose expression is differentially regulated, J. Bacteriology, vol.177, pp.3904-3910, 1995.

D. P. Woolridge, N. Vazquez-laslop, P. N. Markham, M. S. Chevalier, E. W. Gerner et al., Efflux of the natural polyamine spermidine facilitated by the Bacillus subtilis multidrug transporter Blt, J. Biol. Chem, vol.272, pp.8864-8866, 1997.

D. Martino, M. L. Campilongo, R. Casalino, M. Micheli, G. Colonna et al., Polyamines: Emerging players in bacteria-host interactions, Int. J. Med. Microbiol, vol.303, pp.484-491, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01044932

R. Campilongo, M. L. Di-martino, L. Marcocci, P. Pietrangeli, A. Leuzzi et al., Molecular and functional profiling of the polyamine content in enteroinvasive E. coli: Looking into the gap between commensal E. coli and harmful Shigella, PLoS ONE, vol.9, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01166985

A. J. Tett, R. Karunakaran, and P. S. Poole, Characterisation of SalRAB a salicylic acid inducible positively regulated efflux system of Rhizobium leguminosarum bv viciae 3841, PLoS ONE, vol.9, 2014.

H. Hirakawa, K. Nishino, T. Hirata, and A. Yamaguchi, Comprehensive studies of drug resistance mediated by overexpression of response regulators of two-component signal transduction systems in Escherichia coli, J. Bacteriol, vol.185, pp.1851-1856, 2003.

Y. Eguchi and R. Utsumi, Alkali metals in addition to acidic pH activate the EvgS histidine kinase sensor in Escherichia coli, J. Bacteriol, vol.196, pp.3140-3149, 2014.

M. Pasqua, M. Grossi, S. Scinicariello, L. Aussel, F. Barras et al., The MFS efflux pump EmrKY contributes to the survival of Shigella within macrophages, Sci. Rep, vol.9, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02187079

E. Njamkepo, N. Fawal, A. Tran-dien, J. Hawkey, N. Strockbine et al., Global phylogeography and evolutionary history of Shigella dysenteriae type 1, Nat. Microbiol, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01422023

M. Pasqua, V. Michelacci, M. L. Di-martino, R. Tozzoli, M. Grossi et al., The Intriguing Evolutionary Journey of Enteroinvasive E. coli (EIEC) toward Pathogenicity. Front. Microbiol, 2017.

R. A. Dixon, Natural products and plant disease resistance, Nature, vol.411, pp.843-847, 2001.

M. Valecillos, A. Rodríguez-palenzuela, and P. , López-Solanilla, E. The role of several multidrug resistance systems in Erwinia chrysanthemi pathogenesis, Mol. Plant-Microbe Interact, vol.19, pp.607-613, 2006.

F. Barras, F. Van-gijsegem, and A. K. Chatterjee, Extracellular enzymes and pathogenesis of soft-rot Erwinia, Annu. Rev. Phytopathol, vol.32, pp.201-234, 1994.

R. S. Ravirala, R. D. Barabote, D. M. Wheeler, S. Reverchon, O. Tatum et al., Efflux pump gene expression in Erwinia chrysanthemi is induced by exposure to phenolic acids, Mol. Plant-Microbe Interact, vol.20, pp.313-320, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01997067

M. R. Santos, A. T. Marques, J. D. Becker, and L. M. Moreira, The Sinorhizobium meliloti EmrR regulator is required for efficient colonization of Medicago sativa root nodules, Mol. Plant-Microbe Interact, vol.27, pp.388-399, 2014.

R. González-pasayo and E. Martínez-romero, Multiresistance genes of Rhizobium etli CFN42, Mol. Plant. Microbe. Interact, vol.13, pp.572-577, 2000.

D. Capela, S. Carrere, and J. Batut, Transcriptome-based identification of the Sinorhizobium meliloti NodD1 regulon, Appl. Environ. Microbiol, vol.71, pp.4910-4913, 2005.

S. Eda, H. Mitsui, and K. Minamisawa, Involvement of the SmeAB multidrug efflux pump in resistance to plant antimicrobials and contribution to nodulation competitiveness in Sinorhizobium meliloti, Appl. Environ. Microbiol, vol.77, pp.2855-2862, 2011.

S. Rossbach, K. Kunze, S. Albert, S. Zehner, and M. Göttfert, The Sinorhizobium meliloti EmrAB efflux system is regulated by flavonoids through a TetR-like regulator (EmrR), Mol. Plant-Microbe Interact, vol.27, pp.379-387, 2014.

A. C. Vlot, D. A. Dempsey, and D. F. Klessig, Salicylic Acid, a multifaceted hormone to combat disease, Annu. Rev. Phytopathol, vol.47, pp.177-206, 2009.

J. J. Woodward, A. T. Iavarone, and D. Portnoy, A. c-di-AMP secreted by intracellular Listeria monocytogenes activates a host type I interferon response, Science, vol.328, pp.1703-1705, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02317634

Q. C. Truong-bolduc, N. S. Khan, J. M. Vyas, and D. C. Hooper, Tet38 efflux pump affects Staphylococcus aureus internalization by epithelial cells through interaction with CD36 and contributes to bacterial escape from acidic and nonacidic phagolysosomes, Infect. Immun, vol.85, pp.862-00916, 2017.

M. V. Bianco, F. C. Blanco, M. A. Forrellad, D. Aguilar, E. Campos et al., Knockout mutation of p27-p55 operon severely reduces replication of Mycobacterium bovis in a macrophagic cell line and survival in a mouse model of infection, Virulence, vol.2, pp.233-237, 2011.

F. Bigi, A. Gioffré, L. Klepp, M. P. Santangelo, A. Alito et al., The knockout of the lprG-Rv1410 operon produces strong attenuation of Mycobacterium tuberculosis, Microbes Infect, vol.6, pp.182-187, 2004.

K. N. Adams, K. Takaki, L. E. Connolly, H. Wiedenhoft, K. Winglee et al., Drug tolerance in replicating mycobacteria mediated by a macrophage-induced efflux mechanism, Cell, vol.145, pp.39-53, 2011.

R. P. Morris, L. Nguyen, J. Gatfield, K. Visconti, K. Nguyen et al., Ancestral antibiotic resistance in Mycobacterium tuberculosis, Proc. Natl. Acad. Sci, vol.102, pp.12200-12205, 2005.

D. Schnappinger, S. Ehrt, M. I. Voskuil, Y. Liu, J. A. Mangan et al., Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: Insights into the phagosomal environment, J. Exp. Med, vol.198, pp.693-704, 2003.

A. Sharma, R. Sharma, T. Bhattacharyya, T. Bhando, and R. Pathania, Fosfomycin resistance in Acinetobacter baumannii is mediated by efflux through a major facilitator superfamily (MFS) transporter-AbaF, J. Antimicrob. Chemother, vol.72, pp.68-74, 2017.

M. Pérez-varela, J. Corral, J. A. Vallejo, S. Rumbo-feal, G. Bou et al., Mutations in the ?-Subunit of the RNA Polymerase Impair the Surface-Associated Motility and Virulence of Acinetobacter baumannii, Infect. Immun, vol.85, pp.327-00417, 2017.

P. K. Sahu, P. S. Iyer, M. B. Gaikwad, S. C. Talreja, K. R. Pardesi et al., An MFS transporter-like ORF from MDR Acinetobacter baumannii AIIMS 7 is associated with adherence and biofilm formation on biotic/abiotic surface, Int. J. Microbiol, vol.490647, 2012.

J. Y. Liu, P. F. Miller, J. Willard, and E. R. Olson, Functional and biochemical characterization of Escherichia coli sugar efflux transporters, J. Biol. Chem, vol.274, pp.22977-22984, 1999.

T. May, A. Ito, and S. Okabe, Induction of multidrug resistance mechanism in Escherichia coli biofilms by interplay between tetracycline and ampicillin resistance genes, Antimicrob. Agents Chemother, vol.53, pp.4628-4639, 2009.

K. Koita and C. V. Rao, Identification and analysis of the putative pentose sugar efflux transporters in Escherichia coli, PLoS ONE, vol.7, p.43700, 2012.

X. Ge, Y. Cai, Z. Chen, S. Gao, X. Geng et al., Bifunctional enzyme SpoT is involved in biofilm formation of Helicobacter pylori with multidrug resistance by upregulating efflux pump Hp1174 (gluP), Antimicrob. Agents Chemother, vol.62, pp.957-01018, 2018.

A. Resch, R. Rosenstein, C. Nerz, and F. Götz, Differential gene expression profiling of Staphylococcus aureus cultivated under biofilm and planktonic conditions, Appl. Environ. Microbiol, vol.71, pp.2663-2676, 2005.

K. E. Hagman, W. Pan, B. G. Spratt, J. T. Balthazar, R. C. Judd et al., Resistance of Neisseria gonorrhoeae to antimicrobial hydrophobic agents is modulated by the mtrRCDE efflux system, Microbiology, vol.141, pp.611-622, 1995.

C. E. Lucas, J. T. Balthazar, K. E. Hagman, and W. M. Shafer, The MtrR repressor binds the DNA sequence between the mtrR and mtrC genes of Neisseria gonorrhoeae, J. Bacteriol, vol.179, pp.4123-4128, 1997.

L. F. Guymon, D. L. Walstad, and P. F. Sparling, Cell envelope alterations in antibiotic-sensitive and-resistant strains of Neisseria gonorrhoeae, J. Bacteriol, vol.136, pp.391-401, 1978.

L. Mcfarland, T. A. Mietzner, J. S. Knapp, E. Sandstrom, K. K. Holmes et al., Gonococcal sensitivity to fecal lipids can be mediated by an Mtr-independent mechanism, J. Clin. Microbiol, vol.18, pp.121-127, 1983.

V. Urdaneta and J. Casadesús, Adaptation of Salmonella enterica to bile: Essential role of AcrAB-mediated efflux, Environ. Microbiol, vol.20, pp.1405-1418, 2018.

C. G. Gahan and C. Hill, Listeria monocytogenes: Survival and adaptation in the gastrointestinal tract, Front. Cell. Infect. Microbiol, vol.4, issue.9, 2014.

M. Kaplan-zeevi, N. S. Shafir, S. Shaham, S. Friedman, N. Sigal et al., Listeria monocytogenes multidrug resistance transporters and cyclic di-AMP, which contribute to type I interferon induction, play a role in cell wall stress, J. Bacteriol, vol.195, pp.5250-5261, 2013.

A. P. Mcfarland, S. Luo, F. Ahmed-qadri, M. Zuck, E. F. Thayer et al., Sensing of Bacterial Cyclic Dinucleotides by the Oxidoreductase RECON Promotes NF-?B Activation and Shapes a Proinflammatory Antibacterial State, vol.46, pp.433-445, 2017.

A. P. Mcfarland, T. P. Burke, A. A. Carletti, R. C. Glover, H. Tabakh et al., RECON-dependent inflammation in hepatocytes enhances Listeria monocytogenes cell-to-cell spread, MBio, vol.9, pp.526-00618, 2018.

K. Tadmor, Y. Pozniak, T. Burg-golani, L. Lobel, M. Brenner et al., Listeria monocytogenes MDR transporters are involved in LTA synthesis and triggering of innate immunity during infection, Front. Cell. Infect. Microbiol, vol.4, 2014.

F. Bigi, A. Alito, M. I. Romano, M. Zumarraga, K. Caimi et al., The gene encoding P27 lipoprotein and a putative antibiotic-resistance gene form an operon in Mycobacterium tuberculosis and Mycobacterium bovis, Microbiology, vol.146, pp.1011-1018, 2000.

M. N. Viale, K. T. Park, B. Imperiale, A. K. Gioffre, M. A. Colombatti-olivieri et al., Characterization of a Mycobacterium avium subsp. avium operon associated with virulence and drug detoxification, Biomed Res. Int, vol.809585, 2014.

A. J. Martinot, M. Farrow, L. Bai, E. Layre, T. Y. Cheng et al., Mycobacterial metabolic syndrome: LprG and Rv1410 regulate triacylglyceride levels, growth rate and virulence in Mycobacterium tuberculosis, PLoS Pathog, vol.12, 2016.

C. M. Sassetti and E. J. Rubin, Genetic requirements for mycobacterial survival during infection, Proc. Natl. Acad. Sci, vol.100, pp.12989-12994, 2003.

J. Rengarajan, B. R. Bloom, and E. J. Rubin, Genome-wide requirements for Mycobacterium tuberculosis adaptation and survival in macrophages, Proc. Natl. Acad. Sci, vol.102, pp.8327-8332, 2005.

S. Ramón-garcía, G. R. Stewart, Z. K. Hui, W. W. Mohn, and C. J. Thompson, The mycobacterial P55 efflux pump is required for optimal growth on cholesterol, vol.6, pp.444-448, 2015.

E. De-rossi, J. A. Aínsa, and G. Riccardi, Role of mycobacterial efflux transporters in drug resistance: An unresolved question, FEMS Microbiol. Rev, vol.30, pp.36-52, 2006.

W. Lin, P. F. De-sessions, G. H. Teoh, A. N. Mohamed, Y. O. Zhu et al., Transcriptional profiling of Mycobacterium tuberculosis exposed to in vitro lysosomal stress, Infect. Immun, vol.84, pp.2505-2523, 2016.

D. Martino, M. L. Fioravanti, R. Barbabella, G. Prosseda, G. Colonna et al., Molecular evolution of the nicotinic acid requirement within the Shigella/EIEC pathotype, Int. J. Med. Microbiol, vol.303, pp.651-661, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01044923

X. Han, A. Dorsey-oresto, M. Malik, J. Y. Wang, K. Drlica et al., Escherichia coli genes that reduce the lethal effects of stress, BMC Microbiol, vol.10, 2010.

D. L. Stauff and B. L. Bassler, Quorum sensing in Chromobacterium violaceum: DNA recognition and gene regulation by the CviR receptor, J. Bacteriol, vol.193, pp.3871-3878, 2011.

E. Roscetto, F. Rocco, M. S. Carlomagno, M. Casalino, B. Colonna et al., PCR-based rapid genotyping of Stenotrophomonas maltophilia isolates, BMC Microbiol, 0202.

E. De-carolis, B. Posteraro, A. R. Florio, B. Colonna, G. Prosseda et al., Analysis of heat-induced changes in protein expression of Stenotrophomonas maltophilia K279a reveals a role for GroEL in the host-temperature adaptation, Int. J. Med. Microbiol, vol.301, pp.273-281, 2011.

I. Alav, J. M. Sutton, and K. M. Rahman, Role of bacterial efflux pumps in biofilm formation, J. Antimicrob. Chemother, vol.73, 2003.

D. Domenico, E. G. Cavallo, I. Pontone, M. Toma, L. Ensoli et al., Biofilm producing Salmonella Typhi: Chronic colonization and development of gallbladder cancer, Int. J. Mol. Sci, vol.18, 1887.

S. Baugh, A. S. Ekanayaka, L. J. Piddock, and M. A. Webber, Loss of or inhibition of all multidrug resistance efflux pumps of Salmonella enterica serovar Typhimurium results in impaired ability to form a biofilm, J. Antimicrob. Chemother, vol.67, pp.2409-2417, 2012.

K. Matsumura, S. Furukawa, H. Ogihara, and Y. Morinaga, Roles of multidrug efflux pumps on the biofilm formation of Escherichia coli K-12, Biocontrol Sci, vol.16, pp.69-72, 2011.

G. Psakis, M. Saidijam, K. Shibayama, J. Polaczek, K. E. Bettaney et al., The sodium-dependent d-glucose transport protein of Helicobacter pylori, Mol. Microbiol, vol.71, pp.391-403, 2009.

M. Kuroda, T. Ohta, I. Uchiyama, T. Baba, H. Yuzawa et al., Whole genome sequencing of meticillin-resistant Staphylococcus aureus, Lancet, vol.357, pp.1225-1240, 2001.

P. K. Sahu, P. S. Iyer, A. M. Oak, K. R. Pardesi, and B. A. Chopade, Characterization of eDNA from the clinical strain Acinetobacter baumannii AIIMS 7 and its role in biofilm formation, Sci. World J, 2012.

C. B. Whitchurch, T. Tolker-nielsen, P. C. Ragas, and J. S. Mattick, Extracellular DNA required for bacterial biofilm formation, Science, vol.295, 1487.

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, © 2019 by the authors. Licensee MDPI