C. Ahlstrom, P. Muellner, S. E. Spencer, S. Hong, A. Saupe et al., Inferring source attribution from a multiyear multisource data set of Salmonella in Minnesota, Zoonoses Public Health, vol.64, pp.589-598, 2017.

E. S. Anderson, L. R. Ward, M. J. Saxe, and J. D. De-sa, Bacteriophagetyping designations of Salmonella typhimurium, J. Hyg, vol.78, pp.297-300, 1977.

A. Audurier, R. Chatelain, F. Chalons, and M. Piechaud, , 1979.

, Ann. Microbiol, vol.130, pp.179-189

L. Barco, F. Barrucci, E. Cortini, E. Ramon, J. E. Olsen et al., 12:i:-by MLVA and inferring the sources of human Salmonellosis due to the two serovars in Italy, Front. Microbiol, vol.6, p.301, 2015.

L. Barco, F. Barrucci, J. E. Olsen, and A. Ricci, Salmonella source attribution based on microbial subtyping, Int. J. Food Microbiol, vol.163, pp.193-203, 2013.

M. B. Batz, S. Hoffmann, and J. G. Morris, Ranking the disease burden of 14 pathogens in food sources in the united States using attribution data from outbreak investigations and expert elicitation, J. Food Prot, vol.75, pp.1278-1291, 2012.

P. R. Bessell, O. Rotariu, G. T. Innocent, A. Smith-palmer, N. J. Strachan et al., Using sequence data to identify alternative routes and risk of infection: a case-study of campylobacter in scotland, BMC Infect. Dis, vol.12, p.80, 2012.

W. F. Bodmer and L. L. Cavalli-sforza, A migration matrix model for the study of random genetic drift, Genetics, vol.59, pp.565-592, 1968.

L. Boysen, H. Rosenquist, J. T. Larsson, E. M. Nielsen, G. Sorensen et al., Source attribution of human campylobacteriosis in denmark, Epidemiol. Infect, vol.142, pp.1599-1608, 2014.

U. Buchholz, H. Bernard, D. Werber, M. M. Bohmer, C. Remschmidt et al., German outbreak of Escherichia coli O104:H4 associated with sprouts, N. Engl. J. Med, vol.365, pp.1763-1770, 2011.

S. Buettner, B. Wieland, K. D. Staerk, and G. Regula, Risk attribution of Campylobacter infection by age group using exposure modelling, Epidemiol. Infect, vol.138, pp.1748-1761, 2010.

A. J. Butler, M. K. Thomas, and K. D. Pintar, Expert elicitation as a means to attribute 28 enteric pathogens to foodborne, waterborne, animal contact, and person-to-person transmission routes in Canada, Foodborne Pathog. Dis, vol.12, pp.335-344, 2015.

A. J. Butler, M. K. Thomas, and K. D. Pintar, Systematic review of expert elicitation methods as a tool for source attribution of enteric illness, Foodborne pathog. Dis, vol.12, pp.367-382, 2015.

J. Dale, E. P. Price, H. Hornstra, J. D. Busch, M. Mayo et al., Epidemiological tracking and population assignment of the non-clonal bacterium. Burkholderia pseudomallei, PLoS Negl. Trop Dis, vol.5, p.1381, 2011.

J. M. David, D. Guillemot, N. Bemrah, A. Thébault, A. Brisabois et al., The Bayesian microbial subtyping attribution model: robustness to prior information and a proposition, Risk Anal, vol.33, pp.397-408, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01112825

J. M. David, P. Sanders, N. Bemrah, S. A. Granier, M. Denis et al., Attribution of the french human salmonellosis cases to the main foodsources according to the type of surveillance data, Prev. Vet. Med, vol.110, pp.12-27, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01111002

V. J. Davidson, A. Ravel, T. N. Nguyen, A. Fazil, and J. M. Ruzante, Food-specific attribution of selected gastrointestinal illnesses: estimates from a canadian expert elicitation survey. Foodborne Pathogens Dis, vol.8, pp.983-995, 2011.

A. De-cesare, J. L. Bruce, T. R. Dambaugh, M. E. Guerzoni, and M. Wiedmann, Automated ribotyping using different enzymes to improve discrimination of Listeria monocytogenes isolates, with a particular focus on serotype 4b strains, J. Clin. Microbiol, vol.39, pp.3002-3005, 2001.

A. De-cesare, G. Manfreda, T. R. Dambaugh, M. E. Guerzoni, A. Franchini et al., Automated ribotyping and random amplified polymorphic DNA analysis for molecular typing of Salmonella enteritidis and Salmonella typhimurium strains isolated in Italy, J. Appl. Microbiol, vol.91, pp.1175-1186, 2001.

L. V. De-knegt, S. M. Pires, C. Lofstrom, G. Sorensen, K. Pedersen et al., Application of molecular typing results in source attribution models: the case of multiple locus variable number tandem repeat analysis (MLVA) of Salmonella Isolates Obtained from integrated surveillance in denmark, Risk Anal, vol.36, pp.571-588, 2016.

B. L. Dearlove, A. J. Cody, B. Pascoe, G. Meric, D. J. Wilson et al., Rapid host switching in generalist campylobacter strains erodes the signal for tracing human infections, ISME J, vol.10, pp.721-729, 2016.

A. L. Delbecq, A. H. Van-de-ven, and D. H. Gustafson, Group Techniques for Programming Planning: a Guide to Nominal Groups and Delphi Process, 1975.

X. Didelot and D. Falush, Inference of bacterial microevolution using multilocus sequence data, Genetics, vol.175, pp.1251-1266, 2007.

S. P. Djordjevic, L. E. Unicomb, P. J. Adamson, L. Mickan, and R. Rios, Clonal complexes of campylobacter jejuni identified by multilocus sequence typing are reliably predicted by restriction fragment length polymorphism analyses of the flaA gene, J. Clin. Microbiol, vol.45, pp.102-108, 2007.

A. R. Domingues, S. M. Pires, T. Halasa, and T. Hald, Source attribution of human campylobacteriosis using a meta-analysis of case-control studies of sporadic infections, Epidemiol. Infect, vol.140, pp.970-981, 2012.

M. Doumith, C. Buchrieser, P. Glaser, C. Jacquet, M. et al., Differentiation of the major listeria monocytogenes serovars by multiplex PCR, J. Clin. Microbiol, vol.42, pp.3819-3822, 2004.

. Efsa, Guidance on expert knowledge elicitation in food and feed safety risk assessment, EFSA J, vol.12, p.278, 2014.

E. G. Evers, H. J. Van-der-fels-klerx, M. J. Nauta, J. F. Schijven, and A. H. Havelaar, Campylobacter source attribution by exposure assessment, Int. J. Risk Assess. Manag, vol.8, pp.174-190, 2008.

L. Excoffier, G. Laval, and S. Schneider, Arlequin (version 3.0): an integrated software package for population genetics data analysis, Evol. Bioinform. Online, vol.1, pp.47-50, 2005.

. Fda, Quantitative Assessment of Relative Risk to Public Health From Foodborne Listeria monocytogenes Among Selected Categories of Ready-to-Eat Foods, 2003.

P. Feinsinger and E. Spears, A simple measure of niche breadth, Ecology, vol.62, pp.27-32, 1981.

R. G. Ferrari, P. H. Panzenhagen, and C. A. Conte-junior, Phenotypic and Genotypic eligible methods for Salmonella typhimurium source tracking, Front. Microbiol, vol.8, p.2587, 2017.

I. Friesema, A. De-jong, A. Hofhuis, M. Heck, H. Van-den-kerkhof et al., Large outbreak of Salmonella thompson related to smoked salmon in the netherlands, Euro. Surveill, vol.19, p.20918, 2012.

I. H. Friesema, A. H. Havelaar, P. P. Westra, J. A. Wagenaar, and W. Van-pelt, Poultry culling and campylobacteriosis reduction among humans, the netherlands, Emerg. Infect. Dis, vol.18, pp.466-468, 2012.

L. Fritsch, L. Guillier, A. , and J. , Next generation quantitative microbiological risk assessment: refinement of the cold smoked salmon-related listeriosis risk model by integrating genomic data, Microbial. Risk Anal, vol.10, pp.20-27, 2018.

K. E. Fullerton and B. E. Mahon, Case-control studies of sporadic enteric infections complement information from outbreak investigations, Foodborne Pathog. Dis, vol.10, pp.97-98, 2013.

K. E. Fullerton, E. Scallan, M. D. Kirk, B. E. Mahon, F. J. Angulo et al., Case-control studies of sporadic enteric infections: a review and discussion of studies conducted internationally from 1990 to, Foodborne Pathog. Dis, vol.9, pp.281-292, 2009.

K. Glass, E. Fearnley, H. Hocking, J. Raupach, M. Veitch et al., bayesian source attribution of salmonellosis in south australia, Risk Anal, vol.36, pp.561-570, 2016.

R. Glosnicka and B. Dera-tomaszewska, Comparison of two Salmonella enteritidis phage typing schemes, Eur. J. Epidemiol, vol.15, pp.395-401, 1999.

R. L. Grant, Converting an odds ratio to a range of plausible relative risks for better communication of research findings, BMJ, vol.348, p.7450, 2014.

L. M. Graves and B. Swaminathan, PulseNet standardized protocol for subtyping Listeria monocytogenes by macrorestriction and pulsed-field gel electrophoresis, Int. J. Food Microbiol, vol.65, pp.501-509, 2001.

C. Guo, R. M. Hoekstra, C. M. Schroeder, S. M. Pires, K. L. Ong et al., Application of bayesian techniques to model the burden of human salmonellosis attributable to U. S. food, commodities at the point of processing: adaptation of a Danish model, Foodborne Pathog. Dis, vol.8, pp.509-516, 2011.

T. Hald, W. Aspinall, B. Devleesschauwer, R. Cooke, T. Corrigan et al., World health organization estimates of the relative contributions of food to the burden of disease due to selected foodborne hazards: a structured expert elicitation, PLoS One, vol.11, 2016.

T. Hald, D. M. Lo-fo-wong, and F. M. Aarestrup, The attribution of human infections with antimicrobial resistant Salmonella bacteria in denmark to sources of animal origin, Foodborne Pathog. Dis, vol.4, pp.313-326, 2007.

T. Hald, D. Vose, H. C. Wegener, and T. Koupeev, A Bayesian approach to quantify the contribution of animal-food sources to human salmonellosis, Risk Anal, vol.24, pp.255-269, 2004.

A. H. Havelaar, A. V. Galindo, D. Kurowicka, and R. M. Cooke, Attribution of foodborne pathogens using structured expert elicitation, 2008.

, Foodborne Pathog. Dis, vol.5, pp.649-659

C. W. Hedberg, Case-control studies of sporadic enteric infections have limited usefulness in evaluating key foodborne disease risk factors, Foodborne Pathog. Dis, vol.9, p.868, 2012.

S. Hoffmann, P. Fischbeck, A. Krupnick, and M. Mcwilliams, Using expert elicitation to link foodborne illnesses in the united states to foods, J. Food Protect, vol.70, pp.1220-1229, 2007.

G. Kapperud, G. Espeland, E. Wahl, A. Walde, H. Herikstad et al., Factors associated with increased and decreased risk of Campylobacter infection: a prospective case-control study in Norway, Am. J. Epidemiol, vol.158, pp.234-242, 2003.

E. Kintz, J. Brainard, L. Hooper, and P. Hunter, Transmission pathways for sporadic shiga-toxin producing coli, E., infections: a systematic review and meta-analysis, Int. J. Hyg. Environ. Health, vol.220, pp.57-67, 2017.

S. Kittl, G. Heckel, B. M. Korczak, and P. Kuhnert, Source attribution of human Campylobacter isolates by MLST and Fla-typing and association of genotypes with quinolone resistance, PLoS One, vol.8, p.81796, 2013.

R. D. Kosmider, P. Nally, R. R. Simons, A. Brouwer, S. Cheung et al., Attribution of human VTEC O157 infection from meat products: a quantitative risk assessment approach, Risk Anal, vol.30, pp.753-765, 2010.

R. Lake, B. Horn, and A. Ball, Campylobacter in Food and the Environment Examining the Link With Public Health: Pathway Attribution, 2011.

R. J. Lake, P. J. Cressey, D. M. Campbell, and E. Oakley, Risk ranking for foodborne microbial hazards in New Zealand: burden of disease estimates, Risk Anal, vol.30, pp.743-752, 2010.

M. Laughlin, L. Bottichio, J. Weiss, J. Higa, E. Mcdonald et al., Multistate outbreak of Salmonella poona infections associated with imported cucumbers, Epidemiol. Infect, vol.147, p.270, 2019.

S. Levesque, E. Fournier, N. Carrier, E. Frost, R. D. Arbeit et al., Campylobacteriosis in urban versus rural areas: a case-case study integrated with molecular typing to validate risk factors and to attribute sources of infection, PLoS One, vol.8, p.83731, 2013.

S. J. Liao, J. Marshall, M. L. Hazelton, and N. P. French, Extending statistical models for source attribution of zoonotic diseases: a study of campylobacteriosis, J. R. Soc. Interface, vol.16, 2019.

H. A. Linstone and M. Turoff, The Delphi method: Techniques and Applications, 1975.

C. L. Little, S. M. Pires, I. A. Gillespie, K. Grant, and G. L. Nichols, Attribution of human listeria monocytogenes infections in england and wales to ready-to-eat food sources placed on the market: adaptation of the hald Salmonella source attribution model, Foodborne Pathog Dis, vol.7, pp.749-756, 2010.

M. M. Maury, Y. H. Tsai, C. Charlier, M. Touchon, V. Chenal-francisque et al., Uncovering listeria monocytogenes hypervirulence by harnessing its biodiversity, Nat. Genet, vol.48, pp.308-313, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-02170775

A. Mikkela, J. Ranta, and P. Tuominen, A Modular Bayesian Salmonella Source Attribution Model for Sparse Data, Risk Anal, 2019.

P. Miller, J. Marshall, N. French, J. , and C. , sourceR: classification and source attribution of infectious agents among heterogeneous populations, PLoS Comput. Biol, vol.13, p.1005564, 2017.

J. Mossong, L. Mughini-gras, C. Penny, A. Devaux, C. Olinger et al., Human campylobacteriosis in luxembourg, 2010-2013: a case-control study combined with multilocus sequence typing for source attribution and risk factor analysis, Sci. Rep, vol.6, p.20939, 2016.

A. Moura, A. Criscuolo, H. Pouseele, M. M. Maury, A. Leclercq et al., Whole genome-based population biology and epidemiological surveillance of Listeria monocytogenes, Nat. Microbiol, vol.2, p.16185, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01415883

, Frontiers in Microbiology | www.frontiersin.org

L. Mughini-gras, J. H. Smid, J. A. Wagenaar, A. G. De-boer, A. H. Havelaar et al., Risk factors for campylobacteriosis of chicken, ruminant, and environmental origin: a combined case-control and source attribution analysis, PLoS One, vol.7, p.42599, 2012.

L. Mughini-gras, F. Barrucci, J. H. Smid, C. Graziani, I. Luzzi et al., Attribution of human Salmonella infections to animal and food sources in Italy (2002-2010): adaptations of the dutch and modified Hald source attribution models, Epidemiol. Infect, vol.142, pp.1070-1082, 2014.

L. Mughini-gras, R. Enserink, I. Friesema, M. Heck, Y. Van-duynhoven et al., Risk factors for human salmonellosis originating from pigs, cattle, broiler chickens and egg laying hens: a combined case-control and source attribution analysis, PLoS One, vol.9, p.87933, 2014.

L. Mughini-gras, J. Smid, R. Enserink, E. Franz, L. Schouls et al., Tracing the sources of human salmonellosis: a multi-model comparison of phenotyping and genotyping methods, Infect. Genet. Evol, vol.28, pp.251-260, 2014.

L. Mughini-gras, A. Dorado-garcia, E. Van-duijkeren, G. Van-den-bunt, C. M. Dierikx et al., Attributable sources of communityacquired carriage of Escherichia coli containing beta-lactam antibiotic resistance genes: a population-based modelling study, Lancet Planet Health, vol.3, pp.357-369, 2019.

L. Mughini-gras, E. Franz, and W. Van-pelt, New paradigms for Salmonella source attribution based on microbial subtyping, Food Microbiol, vol.71, pp.60-67, 2018.

L. Mughini-gras, W. Van-pelt, M. Van-der-voort, M. Heck, I. Friesema et al., Attribution of human infections with Shiga toxin-producing Escherichia coli (STEC) to livestock sources and identification of source-specific risk factors, Zoonoses Public Health, vol.65, pp.8-22, 2010.

L. Mughini-gras, M. Heck, and W. Van-pelt, Increase in reptile-associated human salmonellosis and shift toward adulthood in the age groups at risk, the Netherlands, Euro. Surveill, vol.21, p.30324, 1985.

L. Mughini-gras and W. Van-pelt, Salmonella source attribution based on microbial subtyping: does including data on food consumption matter?, Int. J. Food Microbiol, vol.191, pp.109-115, 2014.

P. Müllner, J. M. Collins-emerson, A. C. Midwinter, P. Carter, S. E. Spencer et al., Molecular epidemiology of campylobacter jejuni in a geographically isolated country with a uniquely structured poultry industry, 2010.

, Appl. Environ. Microbiol, vol.76, pp.2145-2154

P. Mullner, G. Jones, A. Noble, S. E. Spencer, S. Hathaway et al., Source attribution of food-borne zoonoses in new zealand: a modified hald model, Risk Anal, vol.29, pp.970-984, 2009.

P. Mullner, S. E. Spencer, D. J. Wilson, G. Jones, A. D. Noble et al., Assigning the source of human campylobacteriosis in New Zealand: a comparative genetic and epidemiological approach, Infect. Genet. Evol, vol.9, pp.1311-1319, 2009.

P. Mullner, T. Shadbolt, J. M. Collins-emerson, A. C. Midwinter, S. E. Spencer et al., Molecular and spatial epidemiology of human campylobacteriosis: source association and genotype-related risk factors, Epidemiol. Infect, vol.138, pp.1372-1383, 2010.

M. Nei, F. Tajima, and Y. Tateno, Accuracy of estimated phylogenetic trees from molecular data. II. gene, frequency data, J. Mol. Evol, vol.19, pp.153-170, 1983.

E. M. Nielsen, J. T. Björkman, K. Kiil, K. Grant, T. Dallman et al., Closing gaps for performing a risk assessment on listeria monocytogenes in ready-to-eat (RTE) foods: activity 3, the comparison of isolates from different compartments along the food chain, and from humans using whole genome sequencing (WGS) analysis. EFSA Support, 2017.

M. Opsteegh, S. Prickaerts, K. Frankena, and E. G. Evers, A quantitative microbial risk assessment for meatborne toxoplasma gondii infection in the netherlands, Int. J. Food Microbiol, vol.150, pp.103-114, 2011.

J. A. Painter, T. Ayers, R. Woodruff, E. Blanton, N. Perez et al., Recipes for foodborne outbreaks: a scheme for categorizing and grouping implicated foods, Foodborne Pathog. Dis, vol.6, pp.1259-1264, 2009.

J. A. Painter, R. M. Hoekstra, T. Ayers, R. V. Tauxe, C. R. Braden et al., Attribution of foodborne illnesses, hospitalizations, and deaths to food commodities by using outbreak data, united states, Emerg. Infect. Dis, vol.19, pp.407-415, 1998.

K. D. Pintar, K. M. Thomas, T. Christidis, A. Otten, A. Nesbitt et al., A comparative exposure assessment of campylobacter in Ontario, Canada. Risk Anal, vol.37, pp.677-715, 2016.

S. M. Pires, E. G. Evers, W. Van-pelt, T. Ayers, E. Scallan et al., Attributing the human disease burden of foodborne infections to specific sources, Foodborne Pathog. Dis, vol.6, pp.417-424, 2009.

S. M. Pires and T. Hald, Assessing the differences in public health impact of salmonella subtypes using a bayesian microbial subtyping approach for source attribution, Foodborne Pathog. Dis, vol.7, pp.143-151, 2010.

S. M. Pires, A. R. Vieira, E. Perez, D. L. Wong, and T. Hald, Attributing human foodborne illness to food sources and water in Latin America and the Caribbean using data from outbreak investigations, Int. J. Food Microbiol, vol.152, pp.129-138, 2012.

S. M. Pires, H. Vigre, P. Makela, and T. Hald, Using outbreak data for source attribution of human salmonellosis and campylobacteriosis in Europe, Foodborne Pathog. Dis, vol.7, pp.1351-1361, 2010.

J. K. Pritchard, M. Stephens, and P. Donnelly, Inference of population structure using multilocus genotype data, Genetics, vol.155, pp.945-959, 2000.

J. Ranta, D. Matjushin, T. Virtanen, M. Kuusi, H. Viljugrein et al., Bayesian temporal source attribution of foodborne zoonoses: campylobacter in finland and norway, Risk Anal, vol.31, pp.1156-1171, 2011.

A. Ravel, V. J. Davidson, J. M. Ruzante, and A. Fazil, Foodborne proportion of gastrointestinal illness: estimates from a canadian expert elicitation survey, Foodborne Pathog. Dis, vol.7, pp.1463-1472, 2010.

A. Ravel, M. Hurst, N. Petrica, J. David, S. K. Mutschall et al., Source attribution of human campylobacteriosis at the point of exposure by combining comparative exposure assessment and subtype comparison based on comparative genomic fingerprinting, PLoS One, vol.12, p.183790, 2017.

J. Reynolds, B. S. Weir, and C. C. Cockerham, estimation of the coancestry coefficient: basis for a short-term genetic distance, Genetics, vol.105, pp.767-779, 1983.

O. Rosef, G. Kapperud, S. Lauwers, and B. R. Gondrosen, Serotyping of campylobacter jejuni campylobacter coli and campylobacter laridis from domestic and wild animals, Appl. Environ. Microbiol, vol.49, pp.1507-1510, 1985.

B. M. Rosner, A. Schielke, X. Didelot, F. Kops, J. Breidenbach et al., A combined case-control and molecular source attribution study of human campylobacter infections in germany, Sci. Rep, vol.7, p.5139, 2011.

F. Roux, E. Sproston, O. Rotariu, M. Macrae, S. K. Sheppard et al., Elucidating the aetiology of human Campylobacter coli infections, PLoS One, vol.8, p.64504, 2013.

W. Ruppitsch, A. Pietzka, K. Prior, S. Bletz, H. L. Fernandez et al., Defining and evaluating a core genome multilocus sequence typing scheme for whole-genome sequence-based typing of listeria monocytogenes, 2015.

, J. Clin. Microbiol, vol.53, pp.2869-2876

A. Sears, M. G. Baker, N. Wilson, J. Marshall, P. Muellner et al., Marked campylobacteriosis decline after interventions aimed at poultry, New Zealand. Emerg. Infect. Dis, vol.17, pp.1007-1015, 2011.

W. S. Shell, M. L. Sayed, F. M. Allah, F. E. Gamal, A. A. Khedr et al., Matrix-assisted laser desorption-ionization-time-of-flight mass spectrometry as a reliable proteomic method for characterization of Escherichia coli and Salmonella isolates, Vet. World, vol.10, pp.1083-1093, 2017.

S. K. Sheppard, J. F. Dallas, N. J. Strachan, M. Macrae, N. D. Mccarthy et al., Campylobacter genotyping to determine the source of human infection, Clin. Infect. Dis, vol.48, pp.1072-1078, 2009.

S. K. Sheppard, K. A. Jolley, and M. C. Maiden, A gene-by-gene approach to bacterial population genomics: whole genome MLST of campylobacter, Genes, vol.3, pp.261-277, 2012.

J. H. Smid, L. Mughini-gras, A. G. De-boer, N. P. French, A. H. Havelaar et al., Practicalities of using non-local or non-recent multilocus sequence typing data for source attribution in space and time of human campylobacteriosis, PLoS One, vol.8, p.55029, 2013.

A. A. Soler-garcia, A. J. De-jesus, K. Taylor, and E. W. Brown, Differentiation of Salmonella strains from the SARA, SARB and SARC reference collections by using three genes PCR-RFLP and the 2100 Agilent Bioanalyzer, Front. Microbiol, vol.5, p.417, 2014.

R. J. Stafford, P. J. Schluter, A. J. Wilson, M. D. Kirk, G. Hall et al., Population-attributable risk estimates for risk factors associated with Campylobacter infection, australia. Emerg. Infect. Dis, vol.14, pp.895-901, 2008.

N. J. Strachan, F. J. Gormley, O. Rotariu, I. D. Ogden, G. Miller et al., Attribution of campylobacter infections in northeast scotland to specific sources by use of multilocus sequence typing, J. .Infect. Dis, vol.199, pp.1205-1208, 2009.

E. N. Taboada, S. L. Ross, S. K. Mutschall, J. M. Mackinnon, M. J. Roberts et al., Development and validation of a comparative genomic fingerprinting method for high-resolution genotyping of Campylobacter jejuni, J. Clin. Microbiol, vol.50, pp.788-797, 2012.

A. Thepault, G. Meric, K. Rivoal, B. Pascoe, L. Mageiros et al., Genome-wide identification of host-segregating epidemiological markers for source attribution in Campylobacter jejuni, Appl. Environ. Microbiol, vol.83, pp.3085-3016, 2017.

E. J. Threlfall, I. S. Fisher, L. R. Ward, H. Tschape, and P. Gerner-smidt, Harmonization of antibiotic susceptibility testing for Salmonella: results of a study by 18 national reference laboratories within the european union-funded enter-net group, Microb. Drug Resist, vol.5, pp.195-200, 1999.

E. J. Threlfall, E. Torre, L. R. Ward, A. Dávalos-pérez, B. Rowe et al., Insertion sequence IS200 fingerprinting of Salmonella typhi: an assessment of epidemiological applicability, Epidemiol. Infect, vol.112, pp.253-261, 1994.

J. Tustin, K. Laberge, P. Michel, J. Reiersen, S. Dadadottir et al., A national epidemic of campylobacteriosis in iceland, lessons learned, Zoonoses Public Health, vol.58, pp.440-447, 2011.

H. Vally, K. Glass, L. Ford, G. Hall, M. D. Kirk et al., Proportion of illness acquired by foodborne transmission for nine enteric pathogens in australia: an expert elicitation, Foodborne Pathog. Dis, vol.11, pp.727-733, 2014.

W. Van-pelt, D. Mevius, H. G. Stoelhorst, S. Kovats, A. W. Van et al., Oorsprong, omvang en kosten van humane salmonellose. Deel 1. Oorsprong van humane salmonellose met betrekking tot varken, rund, kip, ei en overige bronnen, Euro. Surveill, vol.9, pp.240-243, 1999.

J. K. Varma, M. C. Samuel, R. Marcus, R. M. Hoekstra, C. Medus et al., Listeria monocytogenes infection from foods prepared in a commercial establishment: a case-control study of potential sources of sporadic illness in the united states, Clin. Infect. Dis, vol.44, pp.521-528, 2007.

A. Vellinga and F. Van-loock, The dioxin crisis as experiment to determine poultry-related campylobacter enteritis, Emerg. Infect. Dis, vol.8, pp.19-22, 2002.

A. R. Vieira, J. Grass, P. J. Fedorka-cray, J. R. Plumblee, H. Tate et al., Attribution of Salmonella enterica serotype hadar infections using antimicrobial resistance data from two points in the food supply system, Epidemiol. Infect, vol.144, 1983.

A. J. Wagenaar, G. D. Newell, S. R. Kalupahana, and L. Mughini-gras, Campylobacter: Animal Reservoirs, Human Infections, and Options for Control. Zoonoses -Infections Affecting Humans and Animals: Focus on Public Health Aspects. A. Sing, 2015.

J. A. Wagenaar, N. P. French, and A. H. Havelaar, Preventing Campylobacter at the source: why is it so difficult?, Clin. Infect. Dis, vol.57, pp.1600-1606, 2013.

H. Wahlstrom, Y. Andersson, L. Plym-forshell, and S. M. Pires, Source attribution of human Salmonella cases in Sweden, Epidemiol. Infect, vol.139, pp.1246-1253, 2011.

B. Wang, C. Wang, J. D. Mckean, C. M. Logue, W. A. Gebreyes et al., Salmonella enterica in swine production: assessing the association between amplified fragment length polymorphism and epidemiological units of concern, Appl. Environ. Microbiol, vol.77, pp.8080-8087, 2011.

D. J. Wilson, E. Gabriel, A. J. Leatherbarrow, J. Cheesbrough, S. Gee et al., Tracing the source of campylobacteriosis, PLoS Gene, vol.4, p.1000203, 2008.