A. Oeckinghaus and S. Ghosh, The NF-kappaB family of transcription factors and its regulation, Cold Spring Harb Perspect Biol, vol.1, 2009.

S. Luco, O. Delmas, P. Vidalain, F. Tangy, R. Weil et al., RelAp43, a member of the NF-?B family involved in innate immune response against Lyssavirus infection, PLoS Pathog, vol.8, p.1003060, 2012.

T. Gantke, S. Sriskantharajah, and S. C. Ley, Regulation and function of TPL-2, an I?B kinase-regulated MAP kinase kinase kinase. Cell Research, Nature Publishing Group, vol.21, pp.131-145, 2010.

S. Papoutsopoulou, A. Symons, T. Tharmalingham, M. P. Belich, F. Kaiser et al., ABIN-2 is required for optimal activation of Erk MAP kinase in innate immune responses, Nat Immunol. Nature Publishing Group, vol.7, pp.606-615, 2006.

M. P. Belich, A. Salmerón, L. H. Johnston, and S. C. Ley, TPL-2 kinase regulates the proteolysis of the NF-kap-paB-inhibitory protein NF-kappaB1 p105, Nature, vol.397, pp.363-368, 1999.

G. R. Babu, J. W. Norman, L. Waterfield, M. Chang, M. Wu et al., Phosphorylation of NF-?B1/p105 by oncoprotein kinase Tpl2: Implications for a novel mechanism of Tpl2 regulation, Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, vol.1763, pp.174-181, 2006.

O. V. Savinova, A. Hoffmann, and G. Ghosh, The Nfkb1 and Nfkb2 Proteins p105 and p100 Function as the Core of High-Molecular-Weight Heterogeneous Complexes, Molecular Cell, vol.34, pp.591-602, 2009.

K. Bandow, J. Kusuyama, M. Shamoto, K. Kakimoto, T. Ohnishi et al., LPS-induced chemokine expression in both MyD88-dependent and -independent manners is regulated by Cot/Tpl2-ERK axis in macrophages, FEBS Letters. Federation of European Biochemical Societies, vol.586, pp.1540-1546, 2012.

J. Arthur and S. C. Ley, Mitogen-activated protein kinases in innate immunity, Nat Rev Immunol, vol.13, pp.679-692, 2013.

N. Ito, G. W. Moseley, and M. Sugiyama, The importance of immune evasion in the pathogenesis of rabies virus, J Vet Med Sci, vol.78, pp.1089-1098, 2016.

K. Brzózka, S. Finke, and K. Conzelmann, Identification of the rabies virus alpha/beta interferon antagonist: phosphoprotein P interferes with phosphorylation of interferon regulatory factor 3, J Virol, vol.79, pp.7673-7681, 2005.

A. Vidy, M. Chelbi-alix, and D. Blondel, Rabies virus P protein interacts with STAT1 and inhibits interferon signal transduction pathways, J Virol. American Society for Microbiology, vol.79, pp.14411-14420, 2005.

L. Wiltzer, F. Larrous, S. Oksayan, N. Ito, G. A. Marsh et al., Conservation of a unique mechanism of immune evasion across the Lyssavirus genus, J Virol, vol.86, p.22740405, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-01481638

P. Ge, J. Tsao, S. Schein, T. J. Green, M. Luo et al., Cryo-EM model of the bullet-shaped vesicular stomatitis virus, Science, vol.327, pp.689-693, 2010.

R. Pollin, H. Granzow, B. Köllner, K. Conzelmann, and S. Finke, Membrane and inclusion body targeting of lyssavirus matrix proteins, Cell Microbiol, vol.15, pp.200-212, 2013.

R. Kassis, F. Larrous, J. Estaquier, and H. Bourhy, Lyssavirus matrix protein induces apoptosis by a TRAILdependent mechanism involving caspase-8 activation, J Virol. American Society for Microbiology, vol.78, pp.6543-6555, 2004.

F. Larrous, A. Gholami, S. Mouhamad, J. Estaquier, and H. Bourhy, Two Overlapping Domains of a Lyssavirus Matrix Protein That Acts on Different Cell Death Pathways, J Virol, vol.84, pp.9897-9906, 2010.
URL : https://hal.archives-ouvertes.fr/pasteur-01491943

A. Gholami, R. Kassis, E. Real, O. Delmas, S. Guadagnini et al., Mitochondrial dysfunction in lyssavirus-induced apoptosis, J Virol, vol.82, pp.4774-4784, 2008.

Y. Ben-khalifa, S. Luco, B. Besson, F. Sonthonnax, M. Archambaud et al., The matrix protein of rabies virus binds to RelAp43 to modulate NF-?B-dependent gene expression related to innate immunity, Sci Rep, vol.6, issue.39420, 2016.

L. Wiltzer, K. Okada, S. Yamaoka, F. Larrous, H. V. Kuusisto et al., Interaction of rabies virus P-protein with STAT proteins is critical to lethal rabies disease, J Infect Dis, vol.209, pp.1744-1753, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01479389

C. Couturier and R. Jockers, Activation of the Leptin Receptor by a Ligand-induced Conformational Change of Constitutive Receptor Dimers, J Biol Chem, vol.278, pp.26604-26611, 2003.

C. Couturier and B. Deprez, Setting Up a Bioluminescence Resonance Energy Transfer High throughput Screening Assay to Search for Protein/Protein Interaction Inhibitors in Mammalian Cells. Front Endocrinol (Lausanne). Frontiers, vol.3, p.100, 2012.

H. Watanabe, K. Numata, T. Ito, K. Takagi, and A. Matsukawa, INNATE IMMUNE RESPONSE IN TH1-AND TH2-DOMINANT MOUSE STRAINS, Shock, vol.22, pp.460-466, 2004.

R. S. Sellers, C. B. Clifford, P. M. Treuting, and C. Brayton, Immunological Variation Between Inbred Laboratory Mouse Strains, Veterinary Pathology, vol.49, pp.32-43, 2012.

T. Masatani, N. Ito, K. Shimizu, Y. Ito, K. Nakagawa et al., Rabies virus nucleoprotein functions to evade activation of the RIG-I-mediated antiviral response, J Virol. American Society for Microbiology, vol.84, pp.4002-4012, 2010.

E. O'dea and A. Hoffmann, The regulatory logic of the NF-kappaB signaling system. Cold Spring Harb Perspect, Biol, vol.2, pp.216-000216, 2010.

S. C. Sun, P. A. Ganchi, C. Béraud, D. W. Ballard, and W. C. Greene, Autoregulation of the NF-kappa B transactivator RelA (p65) by multiple cytoplasmic inhibitors containing ankyrin motifs, National Acad Sciences, vol.91, pp.1346-1350, 1994.

B. Marinari, A. Costanzo, V. Marzano, E. Piccolella, and L. Tuosto, CD28 delivers a unique signal leading to the selective recruitment of RelA and p52 NF-kappaB subunits on IL-8 and Bcl-xL gene promoters, Proc Natl Acad Sci USA. National Acad Sciences, vol.101, pp.6098-6103, 2004.

F. E. Chen, D. B. Huang, Y. Q. Chen, and G. Ghosh, Crystal structure of p50/p65 heterodimer of transcription factor NF-kappaB bound to DNA, Nature, vol.391, pp.410-413, 1998.

T. Bouwmeester, A. Bauch, H. Ruffner, P. Angrand, G. Bergamini et al., A physical and functional map of the human TNF-?/NF-?B signal transduction pathway, Nat Cell Biol, vol.6, pp.97-105, 2004.

J. E. Tchenio, T. Piton, G. Romeo, P. Baud, and V. , RelA repression of RelB activity induces selective gene activation downstream of TNF receptors, Proc Natl Acad Sci USA, vol.102, pp.14635-14640, 2005.

R. Marienfeld, M. J. May, I. Berberich, E. Serfling, S. Ghosh et al., RelB forms transcriptionally inactive complexes with RelA/p65, J Biol Chem. American Society for Biochemistry and Molecular Biology, vol.278, pp.19852-19860, 2003.

A. Chanut, F. Duguet, A. Marfak, A. David, B. Petit et al., RelA and RelB cross-talk and function in Epstein|[ndash]|Barr virus transformed B cells. Leukemia, vol.28, pp.871-879, 2014.

S. C. Graham, R. Assenberg, O. Delmas, A. Verma, A. Gholami et al., Rhabdovirus matrix protein structures reveal a novel mode of self-association, PLoS Pathog, vol.4, p.1000251, 2008.

W. Liu, Y. Chien, C. Fann, M. Su, J. Chou et al., The inhibitor ABIN-2 disrupts the interaction of receptor-interacting protein with the kinase subunit IKKgamma to block activation of the transcription factor NF-kappaB and potentiate apoptosis, Biochem J, vol.378, pp.867-876, 2004.

K. Clark, S. Nanda, and P. Cohen, Molecular control of the NEMO family of ubiquitin-binding proteins, Nat Rev Mol Cell Biol, vol.14, pp.673-685, 2013.

C. Banks, G. Boanca, Z. T. Lee, C. G. Eubanks, G. L. Hattem et al., TNIP2 is a hub protein in the NF-&(kappa)B network with both protein and RNA mediated interactions. Molecular & Cellular Proteomics, mcp.M116.060509, 2016.

A. Okumura and R. N. Harty, Rabies virus assembly and budding, Adv Virus Res, vol.79, p.21601040, 2011.

W. Kammouni, L. Hasan, A. Saleh, H. Wood, P. Fernyhough et al., Role of nuclear factor-?B in oxidative stress associated with rabies virus infection of adult rat dorsal root ganglion neurons, J Virol, vol.86, pp.8139-8146, 2012.

S. Schmid, D. Sachs, and T. Br, Mitogen-activated Protein Kinase-mediated Licensing of Interferon Regulatory Factor 3/7 Reinforces the Cell Response to Virus, Journal of Biological Chemistry, vol.289, pp.299-311, 2014.

T. Kuriakose, R. A. Tripp, and W. T. Watford, Tumor Progression Locus 2 Promotes Induction of IFN?, Interferon Stimulated Genes and Antigen-Specific CD8+ T Cell Responses and Protects against Influenza Virus

, Public Library of Science, vol.11, pp.1005038-1005060, 2015.

O. Sharif, V. N. Bolshakov, S. Raines, P. Newham, and N. D. Perkins, Transcriptional profiling of the LPS induced NF-kappaB response in macrophages, BMC Immunol, vol.8, issue.1, p.17222336, 2007.

J. Brunel, D. Chopy, M. Dosnon, L. Bloyet, P. Devaux et al., Sequence of events in measles virus replication: role of phosphoprotein-nucleocapsid interactions, J Virol. American Society for Microbiology, vol.88, pp.10851-10863, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01911320

D. Lai, C. L. Tan, J. Gunaratne, L. S. Quek, W. Nei et al., Localization of HPV-18 E2 at Mitochondrial Membranes Induces ROS Release and Modulates Host Cell Metabolism, PLoS ONE. Public Library of Science, vol.8, pp.75625-75639, 2013.

J. Cox and M. Mann, MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification, Nat Biotechnol, vol.26, pp.1367-1372, 2008.

J. Cox, N. Neuhauser, A. Michalski, R. A. Scheltema, J. V. Olsen et al., Andromeda: a peptide search engine integrated into the MaxQuant environment, J Proteome Res, vol.10, pp.1794-1805, 2011.

J. Cox, M. Y. Hein, C. A. Luber, I. Paron, N. Nagaraj et al., Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Molecular & Cellular Proteomics, American Society for Biochemistry and Molecular Biology, vol.13, pp.2513-2526, 2014.

S. Tyanova, T. Temu, P. Sinitcyn, A. Carlson, M. Y. Hein et al., The Perseus computational platform for comprehensive analysis of (prote)omics data, Nat Methods, 2016.

V. G. Tusher, R. Tibshirani, and G. Chu, Significance analysis of microarrays applied to the ionizing radiation response, Proc Natl Acad Sci USA. National Acad Sciences, vol.98, pp.5116-5121, 2001.

D. Szklarczyk, A. Franceschini, S. Wyder, K. Forslund, D. Heller et al., STRING v10: protein-protein interaction networks, integrated over the tree of life, Nucleic Acids Res, vol.43, pp.447-52, 2015.

P. Shannon, A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang et al., Cytoscape: a software environment for integrated models of biomolecular interaction networks, Genome Res. Cold Spring Harbor Lab, vol.13, pp.2498-2504, 2003.

W. Da, . Huang, B. T. Sherman, and R. A. Lempicki, Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources, Nat Protoc. Nature Publishing Group, vol.4, pp.44-57, 2009.

D. W. Huang, B. T. Sherman, and R. A. Lempicki, Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists, Nucleic Acids Res, vol.37, pp.1-13, 2009.

P. Cassonnet, C. Rolloy, G. Neveu, P. Vidalain, T. Chantier et al., Benchmarking a luciferase complementation assay for detecting protein complexes, Nat Methods, vol.8, pp.990-992, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-01971619

J. Kim and R. Grailhe, Nanoluciferase signal brightness using furimazine substrates opens bioluminescence resonance energy transfer to widefield microscopy, Cytometry, pp.1-5, 2016.