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Abstract

Background

Infection with SARE0V2 induces an antibody response targeting multiple antigens thatnges over time. This

complexity presents challenges and opportunities for serological diagnostics.
Methods

A multiplex serological assay was developed to measure IgG and IgM antibody respssen®AREC0V2 spike or
nucleoproteinantigens two antgens for the nucleoproteins of the 229E and NL63 seasonal coronaviruses, and three
non-coronavirus antigensAntibodes were measured in serum samples from patient§rench hospital&/ith RFQPCR
confirmed SAREC0VL2 infection (1 = 259), and negative otrol serum samples collected before the start of the SARS
CoV2 epidemic 1§ = 335). A random forests algorithm was trained with the multipléata to classify individuals with
previous SARE0V2 infection. A mathematical model of antibody kinetiasformed by prior information from other
coronaviruses was used to estimate timarying antibody responses andssess the potential sensitivity and
classification performance of serological diagnostics during the first year following symptom énsegaistical

estimator is presented that can provide estimates of seroprevalence in very low transmission settings.
Results

IgG antibody responses toimeric Spike proteiridentified individuals with pevious RIGPCR confirmed SAR®\2
infection with 91.6% sensitivity (95% confidence interval (CB7.5%, 94.5%) and99.1% specificity (95% CI197.4%,
99.7%). Using a serological signatafdgGand IgMto multiple antigens, it was possible to identify infected individuals
with 98.8% sensitivity(95% CI196.5%,99.6%) and29.3% specificity(95% CI197.6%,99.8%).Informed by prior data from

other coronaviruseswe estimate that one year following infection a monoplex assay with optimalSingG cutoff has
88.7% sensitivity (95% Cl34d%, 9.4%), and that a multiplex assay can increase sensitivity to 96.4% (95% CI: 80.9%
100.0%)When applied tgopulatiorlevel serological surveys, statistical analysis of multiplex data allows estimation of

seroprevalence levels less than 1%, below the fiadsdtivity rate of many other assays.
Conclusion

Serological signhatures based on antibody responses to multiple antigens can provide accurate and robust serologi
classification of individuals with previous SARSY2 infection. This provides poterdi solutions to two pressing
challenges for SARSV2 serological surveillance: classifying individuals who were infected greater than six months

ago, and measuring seroprevalence in serological surveys in very low transmission settings.



Introduction

Severe acute respiratory syndrome coronavirus 2 (SBB&2) causing coronavirus disease 2019 (Ca@)emerged in
Wuhan, China in December 2019. Since then, it has spread rapidly, with confirmed cases being recorded in nearly ev
country in the world. fie presence of viral infection can be directly detectedreigerse transcriptase quantitative PCR
(RFgPCRpPn samples from asopharyngeabr throat swabs For individuals who display symptoms, SARS?2 virus is
detectable in the firs2-3 weeksfollowing symptom onsefl,2]. Viral shedding is shorter in mild casegh only upper
respiratory tract symptoms1-2 weeks)[3]. For asymptomatic individuals, the duration for which SA&RS2 virus can
be detected is uncertairin most countries neithemild cases noasymptomatic cases will be testbg RFgPCRunless
they are direct contacts of knoweases)and evenamong tested individuals manyay be viremia negative at time of
testing due to low viral loador improper samplingWhile not suitablefor diagnoss of clinical cases,esology is a
promising toolfor identifyingindividuals with peviousinfection by detecting antibodiegenerated in response to SARS
CoV2. However, he utility of serological testing depends on the kinetics of the &ARS0V2 antibody response

during and after infection.

An individual is seropositive to a pathogen if they have detectable antibodies specific for that pathogen. From a
immunological perspective, an individual can be defined as seropositive if theyelther antibody secreting plasma
cells and/ora matured memory B cell response to antigens on that patholyepractice, serological assays are used to
measure antibody responses in blood sampleswever,individuals who have never been infected withettarget
pathogen may have nerero antibody responses due to crassctivity with other pathogens or backgrourassay
noise. To account for thidefining seropositivitys equivalentto determining whether tie measured antibody responses

is greater olower than somealefinedcutoff value[4].
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measurement in terms of molecular mass per volume is usually impossible to obtain. Insteadjeaofaassays can
provide measurements that are positively associated with the true antibody concentration, e.g. an optical density fron
an enzymdinked immunosorbent assay (ELISA), or a median fluorescent intensity (MFI) from a Rumiicexsphere
assay In contrast to the continuous measurent of antibody response provided by laboratelbgsed research assays,
most pointof-care serological tests provide a binary outcome: seronegative or seropositive. There are severs
commercially available tests foretbcting SARSo0V2 antibody responses, which are being catalogued by FIND
Diagnosticg[5]. These tests are typically based on lateral flow assays raduimt plastic cartridges which detect
antibodies in small volume blood samples. A key feature of mapiyl tasts is that they are dependent on the choice of

seropositivity cutoff, and there may be substantial misclassification for antibody lgesks tothis cutoff.

Antibody levels are not constamind change over time. The early kinetics of the antjoasponse to SARSV2 have

been well documented with a rapid rise in antibody levels occurbfip days after symptom onset leading to
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seroconversion (depending on the choice of cifif¢1,6-9]. Thereare not yet data on the longerm kinetics of the SARS
CoV2 antibody response. Assuming the antibody response is similar to that of other pathd@eid,[we expect to
observe a bphasic pattern of decay, with rapid decay in the fir€s Bionths after infectionfollowed by a slower rate of
decay. Notably, this decay pattern may lead to seroreversion whereby a previously seropositive individual reverts t
being seronegativef a serological test with an inappropridgehighchoice of cutoff is used for SARSV2 serological

surveys, there is a major risk that seroreversion may lead to previously infected individuals testing serofitgjative

The antibody response generated following SARS?2 infection is diverse, consisting of multiple isotypes targeting
seveanl proteins on the virugcluding the spike proteiand its receptor binding domajifRBD) andthe nucleoprotein

[16]. This complexity of biomarkers provides both a challenge and an opportunity for diagnostics research. The challen
lies in selecting apppriate biomarkes and choosing between the increasing number of commercial assays, many of
which have not been extensively validated and may produce conflicting results. The opportunity is that with multiple
biomarkers, it is possible to generate a segital signature of infection that is robust to how antibody levels change

over time [L7-20], rather than relying on classification séropositive individuals using a single cutoff antibody level

In this analysis, we apply mathematical models of antibkihetics to serological data from the early stageSARS
Co\2 infection andpredict the potential consequences for serological diagnostigghin the first year following

infection.



Methods

Samples

We analysed 97 serum samples frds8 patients admitted to hospitalgh Pariswith SARE0V2 infectionconfirmed by
RTFgPCR21,22], and 162 serum samples from healthcare workers in hospitals in Stras[2ijr@fable 1)68 plasma
samples from the Thai Red Cross, 90 serum samples fromi&ehaalthy donors, and 177 serum samples from French
blood donors collected before December 2019 were used as negative contAdlssamples underwent a viral
inactivation protocol by heating at 5& for 30 minutesThe potential effect of the viral inieation protocol on the
measurement of antibody levels was assessed using serum positive fanaatia antibodies. 1gG and IgM antibody
levels were measured in matched sampbefore and after the inactivation protocorhe viral inactivation protocalid

not affect measured Ig@r IgMlevels (data not shown).

Table 1: Panels ofsamples. Positive control serum samples are from patients withdRTR confirmed SAR®V2 infection.
Negative control samples are from panefgre-epidemic cohorts with ethical approval for broad antibody testiige is presented
as median and range.

Panel RTgPCR N: participants N: samples age (years) symptoms
confirmed mild severe
Hépital Bichat, Paris  yes 4 34 39 (31, 80) 0 4
Hépital Cochin, Paris yes 49 63 56 (26, 79) 27 22
Nouvel Hépital Civil & yes 162 162 32 162 0

Hépital de Haute
Pierre, Strasbourg

Thai Red Cross pre-epidemic 68 68 >18
negative controls

Peru negative controls pre-epidemic 90 90 >18
negative controls

France blood don@  pre-epidemic 177 177 >18

(Etablissement negative controls

Francais dusang)

Serological assays

In a first step four proteins derived from SARGo0V2 Spike were included in the assayhis includeSARE 02
trimeric Spikeectodomain (8) and itsreceptorbinding domain RBD) produced as recombinant proteins in mammalian
cells in the Structural ¥logy Unit at Institut Pasteur, whil1 (cat# REC31806) and S2 (€€31807Aubunits were
purchased from Native Antigen, foxd, UK.S" and RBD were designed based on the viral genome sequence of the
SARE0V2 strain France/IDF0372/2020, obtained from the GISAID database (accession number EPI_ISL_406596).

synthetic genes, codeaptimized for protein expression in mamneai cells, were ordered from GenScript and cloned in
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pcDNA3.1(+) vector as follows: the RBD, residues5381 and the entire S ectodomain (residue42D8). The RBD
construct included an exogenous signal peptide of a human kappa light chain (METDTLWWPASITG) to ensure
efficient protein secretion into the media. The S ectodomain construct was engineered, as reported before to have th
stabilizing double proline mutation (KV9887 to PP98®87) and the foldon domain at thet€rminus that allows the S

to trimerize (YIPEAPRDGQAYVRKDGEWVLLSTFL) resembling the native S state on[24& Botm constructs
contained a Strep (WSHPQFEK), an-bidtidine, and an Avi tag (GLNDIFEAQKIEWHE) attdreni@us for affinity
purification. Protein expressiowas done by transient transfection of mammalian HEK293 free style cells, as already
reported. Proteins were then purified from supernatants on a Streptactin column (IBA Biosciences) followed by siz

exclusion purification on Superdex 200 column using steshdhromatography protocols.

In a second stepeight proteins were added to the assdgecombinant SARSoV2 nucleoprotein (NP) wasxpressedn
E.coliin the Production and Purification of Recombinant Proteins Technological Pla#bmstitut Pasteur Two SARS
Co\f2 antigens were purchased from Native Antigen, Oxford,RBD (cat# REC31832Q) and NP (cat# REC31810dD).
Additional antigens for seasonal coronaviruses 228E(cat# REC3175B00) and NL6JNP (cat# REC3175B00),
influenza A (cat# F:EHLN1-HA-100), adenovirugype 40 (cat# NAT4155200) and rubella (cat# REC316B10) were
purchased from Native Antigedll proteins were coupled to magnetic beads as descridedwhere[25]. Themass of
proteins coupled on beads were optimized to genera loglinear standard curve with a pool of positive serum
prepared from RPPCReonfirmed SARE0V2 patients.

In total, we optimized a Z-plex assay able to detect antibody responses agadesen SARS0V2 antigens t{vo
nucleoproteins constructsfive spike), one nucleoprotein for each seasonal coronavirus NL63 and 229E thmad
antigens from other viruses (Influenza A H1N1, adenovirus typeud@llg for which a large part of the population is
expected to be seropositive due to vaccination or matinfection and hence serve as internal contr@sgplementary
Tablel).

The assay was performed in black, 96 well,-hoxding microtiter plate (cat655090;Greiner BieOne, Germany). Briefly

50 pL of proteirconjugated magnetic beads (500/region/and 50 pL of diluted serum were mixed and incubated for
30 min at room temperature on a plate shakél dilutions were made in phosphate buffered saline containing 1%
bovine serum albumin and 0.05% (v/v) Tweh (denoted as PBT), and all samples wereinusinglicate. Following
incubation, the magnetic beads were separated using magnetic plate separator (Luminex®) for 60 seconds and wast
§ZE 3S]Ju e+ A]3Z i1l ...> }( W dX dZ A «Z u Pv §] c AE Jvp 8 (QE I
antibody at room temperature on a plate shaker. The magnetic beads were separated and washed three times with 1C
.> 3} (Wd v (JvooGC & epe% Vv Jv iii ...> } (W dX &}E /PD u spE ukRsS-U
Phycoerythrin(RPE)-conjugatel Donkey AntHuman IgM(cat#7/09-116-073, Jacksonimmuni@esearchUK) antibody

was used asecondary antibody at 1/400 dilution. For 1gG, serum samples were diluted 1/106-Rhgcoerythrin(R-



PE) -conjugated Donkey Antluman IgG(cat#709116-098; JacksonimmuriResearch UK) antibody was used as
secondary antibody at 120 dilution.

On each plate, two blanks (only beads, no serum) were included as well as a standard curve prepared fi@oh two
serial dilutions (1:50 to 1:25600) of a pool of positivatrols. Plates were read using a Luminex® MAGPIX® systiem

the median fluorescence intensity (MFI) was used for analysispaaneter logistic curve was used to convert MFI to
antibody dilution, relative to the standard curve performed on the sarfaepto account for inteilassay variations. The
multiplex immunoassay was validated by checking that the MFI obtained were well correlated with those obtained ir

monoplex (only one conjugated be&gpe per well).For nonSARE 02 antigens, MFI data wased for the analysis.

Statistical evaluation of diagnostic performance

For measured antibody responses to a single antigen, diagnostic sensitivity is defthedoroportion of patients with
RTFgPCR confirmed SAR®SV2 infection with measured aitiody levels above a given sqrositivity cutoff. For
assessment of classification performance, samples taken from individuals less than 10 days after symptom onset we
excluded.Diagnostic specificity is defined to be the proportion of negative controls (mathhistory of SARGoV2
infection) with measured antibody levels below a given seropositivity cutoff. Sensitivity and specificity can be traded o
against each other by varying the seropositivity cutoff. This t@ffles formally evaluated using Receiv®perating

Characteristic (ROC) analysis.

Measured antibody responses to multiple antigens can be combined to identify individuals with previou€ BARS
infection using classification algorithms. Here we use a random forests algddflimUncertainly in sensitivity and
specificity is quantified in three ways: (ijv}u] o }v(] v ]Jv8 EA o- 0 po § pe]VvP tibtde }v e
repeat crossvalidation with a training set comprising 2/3 of the data and a disjoint testing set comprisingf the

data; (iii) crosganel validation with algorithms trained and tested on disjoint panels of (Btplementary Figure S1)

Mathematical model of antibody kinetics

SARE0V2 antibodykinetics aredescribed using a previously published mathenaticiodel ofthe immunological
processes underlying the generation and waning of antibody responses following infectiaca@nation[10]. The

existing model is adapted to account for the frequent data available in the first weeks of infection.
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where B denotes Bymphocytes ws the rate of differentiation of B/mphocytesnto antibody secreting plasma cellg,
denotes shordlived plasma ce#, P, denotes longlived plasma ceff, &s the proportion ofplasma cellghat are short
lived, g is the rate of generation of antibodies (IgG or IgM) frptasma cefl, andr is the rate ofdecay of antibody
molecules. Assuming(0) =B, Py(0) =R(0) =0 andA(0) =A,,, these equations can be solved analytically to give
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Statistical inference was implamted within amixedeffects framework allowng for characterisation of the kinetics
within each individualvhile also describing the populatidavel patterns. Orthe population level, both the mean and
variation inantibody kinetics are accounted fofhe models werditted in a Bayesian framework using Markov chain
Monte Carlo methods with informative priors. Posterior parameter estimates are presentededf@ans with 95%

credible intervals (Crls).

Prior data

The recent emergence of SAR8\V2 means hat longterm data on the duration of antibody responses do not yet exist.
Therefore, predictions of antibody levels beyond the period for which data has been col&etedavily dependent on
structural model assumptions and assumed prior informatibine prior estimate of the halfife of IgG molecules is 21
days. The prior estimate of the hdiffie of IgM molecules i$0 days. Prior estimatefor the shortlived component of the
antibody response (halffe = 3.5 days) are consistent with data from seak sources[10-14]. The most notable
uncertainty relates to estimates of the duration of the leliged component of the SAR®V2 antibody responsedVe
reviewed data from a number of sources on the ldagn antibody kinetics following infection withtleer coronaviruses
[26-31], summarized inAppendixTable AL Based on the wide range of lotgym antibody kinetics observed, we
assumed a prior estimate of the hdilfe of the longlived component of thdgGantibody response to be 400 days, and
that the proportion of the shorilived antibody secreting cells is 90%. This corresponds to amscemhere the 1gG
antibody responses decreases by approximately 60% after one year. Additional sensitivity analyses were run assum

the haltlife of the longlived component of the 1gG antibody response to be 200 days and 800 days.

The model was first fitted to data from 23 patients with-fHCR confirmed SAR®V2 infectionin Hong Kong hospitals
who were followed longitudinally for up to four weeks after initial onset of sympt¢hisPosterior estimates from this
model and data were used to provide prior estimates for theapaeters describing the early stages of the antibody

responsgAppendixTabk A2).



Serological surveillance

A ROC curve obtained from a training data set consisting of both positive and negative sengdssribedby a
sequence of sensitivities and specificitieddAD 1= Nfold crossvalidation generates samples of sensitivity
<V p&A O pcfor each ®.land samples of specificityO i & & t.cfor each ®.AFollowing a previously outlined
approach 82,33], for each paili of sensitivity and specificity, we obtalihestimates of tle measured seroprevalendé;,

in a scenario with true seroprevalengeas follows:
/ yak 60WE :SF 6;:sF Of4
The point estimates of sensitivity and specificity can be used to calculate an adjusted estimate of true seroprevalence:
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with @4 L rif / 550 s F ®ABoth/ ;and @are summarized as mediawith 95% rangesiVe calculate the expected

relative error as
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Ethics

Serum sampleswere obtained through the CORSER study (Etudeég@d#miologique du virus SAR®V2 en France :
}veS]Sus]llv [upv }oo S8]}v [ Z vS]loo}ve ]J}o}P]cu ¢ Zpuu phwne-ppided By theC /v

Comité de Protection des Personriesde France llland the French COVID cohort (NCT042628@dnsored by Inserm

and approved by the Comité de Protection des Personnes lle de Fran@&ample collection in &pital Cochin was

approved by the Bsearch Ethics Commission of NeekeaxchinHospital Use of he Peruviamegative controlswas

approved by the Institutional Ethics Committee from the Universidad Peruana Cayetano Heredid (8BNS



Results

Single biomarker classification

IgG and IgM antibody responses tielve antigenswere measured as median fluorescence intensity (MFby the
seven SARG0V2 antigens, the measured MRdas converted to antibody dilutions (Figure 1). For Bl SARE0V2
biomarkers(seven antigens, IgG and IgM for both)easured responses were siggantly higher in samples with RT

gPCR confirmed infection than in negative control samgtegute 1AB; Pvalue< 1 x 10; 2 sided t test).

The tradeoff between sensitivity and specificity obtained by varying the cutoff for seropositivity was igatest using

a ROCcurve (Figure @D). Depending on the characteristics of the desired diagnowgt, different targets for
sensitivity and specificity can be considered. The results of three targets are summarized in Table 2. These are: (i) I
sensitivity target enforicig sensitivity > 99%; fibalanced sensitivity and specificity where both are approximately equal;
and (iii) high specificity target enfang specificity >99%. Focusing on the high specificity taayetS" IgGwas the best
performing biomarkemwith 99.1% specificity(95% CI: B.4%, 997%)and 91.6% sensitivity(95% CI: B5%, 9.5%) Anti-

S" 1gG provided significantly better classification than all other biomarkeugp{ementaryTableR2V D E u E[e § &
value < 16). There was significant correlation betweeamtibody responses againsil SARS0\2 antigers, but no
significant correlation between antibody responses to SBB¥2 and the seasonal coronaviruses 229E and NL63

(Figure 1E).
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(A) IgG antibody responses
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Figure 1. Anti-SARSCoV2 antibody responses. (AMeasuredlgG antibody dilution®r medium fluorescence intensity (MR
serum samples with previously confirmed-§ACR infection from patients indpital Bichat ( = 34), health care workersom
Strasbourgn = 162), and Bpital Cochinrf = 63). Negative control samples from Thailand 68), Peru 6 =90), and Frencldonors

(n = 177) were also tested.(B) MeasuredIgM antibody dilutions or MFI in serumr plasmasamples.(C) Receiver Operating
Characteristic (ROC) curiagr 1gG antibodie®btained by varying the cutoff for seropositivit@olours correspond to those shown in
part A.(D) ROC curvéor IgM antibodieobtained by varying the cutoff for seropositivif) Area under the ROC curve for individual
biomarkers. (F) Spearman arrelation between measured antibody responses.

11



Table 2: Sensitivity and specificity targets for single biomarkessd multiplex combinations 95%binomial confidence intervals

A E 0 po 3

the highest sensitivity while enforcing specificity > 99%.

pe]lv P t]oAhtiden cordldjatns were selected to optimize sensitivity for the high specificity target, i.e.

biomarker

high sensitivity taget
(sensitivity > 99%)

balanced target
(sensitivity ~ specificity)

high specificity target
(specificity > 99%)

sensitivity specificity sensitivity specificity sensitivity specificity

IgG antibody dilution

antj-S" 99.2% 94.0% 97.1% 97 0% 91.6% 99.1%
(971%, 99.8%) (91.0%,96.1%) | (944%, 986%) (946%, B.4%) | (87.5%, HN.5%) (97.4%, 997%)

anti-RBDQ, 100.0% 0.0% 89.2% 97.5% 88.0% 99.1%
(98.5%, (0.0%,1.1%) (84.8%, .5%) (95.3%, B.7%) | (835%,91.5%) (97.4%, 997%)
100.0%)

anti-RBLR, 99.2% 0% 91.2% 91.4% 78.1% 99.1%
(97.1%,99.8%) (0%,1.1%) (87.1%, N.1%) (87.9%, B.9%) | (72.6%, 8.8%) (97.4%, 997%)

anti-S1 99.2% 759% 91.6% 91.7% 50.6% 99.1%
(971%, 99.8%) (71.0%, 802%) | (875%, 945%)  (88.2%, 942%) | (44.5%, B.7%) (97.4%, 997%)

anti-S2 99.2% 226% 90.7% 91.4% 66.9% 99.1%
(971%, 99.8%) (18.5%,27.4%) | (86.6%, B.7%) (87.9%, B.9%) | (60.9%, 2.5%) (97.4%, 997%)

anti-NR,; 100.0% 0% 85.7% 85.8% 73.7% 99.1%
(98.5%, (0%,1.1%) (80.8%,89.5%) (81.7%,89.1%) | (67.9%,78.8%) (97.4%, 997%)
100.0%)

anti-NP,, 100.0% 0% 86.9% 86.7% 72.9% 99.1%
(98.5%, (0%,1.1%) (82.1%, D.5%) (82.7%,89.9%) | (67.1%,78.0%) (97.4%, 997%)
100.0%)

IgM antibody dilution

antj-S" 99.6% 9.2% 74.9% 74 9% 0% 100%
(97.8%,99.9%) (6.6%, 2.8%) | (69.2%, B.9%) (70.0%,79.2%) | (0%, 1.5%) (98.9%, 100%)

anti-RBDQ, 99.2% 24.0% 87.3% 87.1% 64.5% 99.3%
(971%, 99.8%) (19.7%,28.8%) | (82.6%, D.8%) (83.1%, D.3%) | (58.4%,70.2%) (97.8%, 998%)

anti-RBDR, 99.2% 28.4% 84.9% 84.5% 57.0% 99.3%
(971%, 99.8%) (23.9%,33.5%) | (79.9%,88.8%) (80.2%,88.0%) | (50.8%,62.9%) (97.8%, 998%)

anti-S1 99.6% 7.4% 69.3% 69.4% 0% 100%
(97.8%, 99.9%) (5.0%,10.7%) | (63.4%, A.7%) (64.2%, #A.1%) | (0%, 1.5%) (98.9%, 100%)

anti-S2 99.2% 8.5% 65.7% 65.7% 0% 100%
(97 8%, 99.8%) (6.0%,12.0%) | (59.7%,71.3%) (60.5%, 0.6%) | (0%, 1.5%) (98.9%, 100%)

anti-NP,; 99.2% 17.3% 73.3% 73.4% 0% 100%
(971%, 99.8%) (13.7%,21.8%) | (67.5%,78.4%) (68.5%,77.9%) | (0%, 1.5%) (98.9%, 100%)

anti-NP,; 99.2% 5.5% 73.7% 73.8% 0% 100%

(971%, 99.8%)

(3.6%, 85%)

(67.9%,78.8%)

(68.8%,78.2%)

(0%, 1.5%)

(98.9%, 100%)

Multiplex combinations

S"1gG+ RBR, IgG

S"1gG+ RBR IgG +
NR;IgG

S"1gG+ RBRR IgG +
NR,11gG + S2 I1gG
S"1gG+ RBRR 1gG + NR
I9G + S2 IgG + RBIQM
S"1gG+ RBRR 1gG + NR
I9G + S2 IgG + RBIQM +
NR,; IgM

99.2%
(97.2%, 99.8%)
99.2%
(97.2%, 99.8%)

99.2%
(97.2%, 99.8%)
99.2%
(97.2%, 99.8%)

99.2%
(97.2%, 99.8%)

95.8%
(93.1%,97.5%)
96.6%
(94.1%,98.1%)

96.0%
(93.3%,97.6%)
98.5%
(96.6%,99.4%)

98.9%
(97.1%,99.6%)

97.6%
(94.9%,98.9%)
98.0%
(95.4%,99.1%)

98.8%
(96.5%,99.6%)
98.8%
(96.5%,99.6%)

98.8%
(96.5%,99.6%)

97.6%
(95.4%,98.8%)
98.1%
(96.1%,99.1%)

98.8%
(96.9%,99.5%)
98.9%
(97.1%,99.6%)

98.9%
(97.1%,99.6%)

95.0%
(92.3%,97.5%)
98.0%
(95.4%,99.1%)

98.4%
(96.0%,99.4%)
98.8%
(96.5%,99.6%)

98.8%
(96.5%,99.6%)

99.1%
(97 4%,99. %)
99.1%
(97 4%,99. Tb)

99.1%
(97 4%,99. %)

99.3%
(97 6%,99.8%)

99.3%
(97 6%,99.8%)
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Serological signatures andultiple biomarker classification

With 24 biomarkers, there are £23/2 = 156possible pairwise comparisenFgure 2Aprovides an overview o$ix
pairwise comparisons of antibody responses. The data are noisy, highly correlatedyardirhensional (although only
two dimensions are depicted heré)Ve refer to the pattern of multiple antibody responses in multiple dimensions as
the serological sigriare. For all plots of SARS0V2 biomarkerghere are two distinct clusters: antibody responses from
negative controsampledn blue cluster in the bottom leftand antibody responses from serum samples from individuals

with RFgPCR confirmed SAR®\2 infection cluster in the centre and top right

The classification performanag multiplex combinations ofntibody responses is shown with the ROC curves in Figure
2B. Includingdata fromadditionalbiomarkers leadto significant improvements in clagstition performance (Tabl).

For example, for the high specificity target, with a single biomarker-@niyG) wecan achieve 9.6% sensitivity (95%

Cl: §.5%, 9.5%). Including antRBI¥2 IgG increases sensitivity t65.6% sensitivity (95% Cl:28% 97.5%).
Combinations of size five to six provi€.8% sensitivity (95% CI68%, 9.6%)and 99.3% sensitivity (95% CI17.8%,

99.8%) There are diminishing returns to increasing the number of additional antigens (FiQure 2

Figure2: Serological signatures of SAR®\2 infection. (A) Pairwise combinations of antibody respons&sch point denotes a
measured antibody response from a sample frétdpital Bichat rf = 34), Nouvel Hopital Civil &6pital de Haute Pierrén
Strasbourgr{ = 162), and Hépital Cochin € 63). Negative control samplese includedfrom Thailand f = 68), Peru 6 =90) and
French blood donorsn(=177) (B) ROC curves for multiple biomarker classifiers generagdg aRandom Forests algorithrC) For
a high specificity target (>99%), sensitivity increases with additional biomarkers. Sensitivity was estimated using aHeerglem

classifier. Points and whiskers denote the median and 95% confidence intervals froah cepssvalidation.
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SARS&C0V2 antibody kinetics

A mathematical model of antibody kinetics was fit to the serological data. Figush@ws data froma patient from
Hopital Bichat vith frequent longitudinal samplingrhe data and modeéhdicatethat the antibody response is in a rising
phase betweerb and 30 days after symptom onsefhe seroconversion time depends on the seropositivity cutoff. For
the cutoffs shown, seroconversion occurs for e@ﬂilgG, antRBD; IgG and antB2 1gG, but ridor anti-RBL), IgG, ant

S1 IgG, aniNR,; IgG and antNR,, IgG.

Figure3: IgG antibody kinetics(A) Measured I antibody dilutions, shown as pointsfrom a patient in Hopital Bichatfollowed
longitudinaly. Posteriormedian model predictionsf IgG antibody dilutiorare shown as black lines, with 95% credible intervals in
grey. The coloured dashed line represents the cutoff for IgG seropositivity for that antigen. IgM antibody dilutions are shown as
asterisks The bla& horizontal dashed lines represent the upper and lower limits of the agBaleasured IgG antibody dilutions

and model prediction$or the full population. Measured IgG antibody dilutions are shown as geometric mean titre (GMT) with 95%
ranges(C)Model predicted proportion oindividuals testing seropositive over time.

Forall 215individuak with RFgPCR SARS\2 infection, FiguréBshows the model predicted IgG antibody response
to SARECoV2. For all antigens, we predict afinasic patterrof waning with a first rapid phase between one and three
months after symptononset, followed by a slower rate of waninghe percentage reduction in antibody level after one
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year was mostly determined by prior information amdtimated to be47% (95% Crli8%, 90%) for antiS" IgG

antibodies with comparable estimates for other antige(ppendixTableA3).

Sensitivity was assessed using the seropositivity cutoff based on the high specificity target in FablalRantigens
considered, we predicthat there will be a reduction in sensitivity over time, although there is a large degree of
uncertainty (Figure 3C)In particular, we predict that the sensitivity based on afitilgG antibody responses aftene
yearwill be 88.7% (95% CrB3.4%,97.4%);andthat the sensitivityof a four antigen multiplex classifier after six months
will be %.4% (95% Cr80.9%, 100%jFigure 4)

Figure4: Model predictedsensitivity over time. Proportion d n =215individuals with gRPCR infection testing seropositive over
time. ARandomForests algorithm was used for classification of multiple antigen multiplex data. The grey shaded region shows the
95% uncertainty interval for thour antigen multiplex classér.
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Multiplex assays for seroprevalence surveys

Forserologicaldiagnoss ofindividual samples, the targgiursued thus far iso optimize sensitivity whilst enforcing high
specificity (99%). A serological assay that accurately classifies individual samplaseyikrform well at estimating
seroprevalence in populations. Howeyan assay optimized for individulgvel classification is not necessarily optimal

for populatiortlevel surveillance wherthe target isto obtain accurate estimates of the true seroprevalence. Figure 5A
presents ROC curves fomaonoplexanti-S" IgG assay and a multiplex assesing six biomarkers from Tablewgth
guantification of unceinty via repeat crossalidation. In an epidemiological scenario with true seroprevalence = 5%,
the measured seroprevalence will depend on the assay sensitivity and false positive tatespecificity) (Figure 5B).

For high false positive rate, the msured seroprevalence overestimates the true seroprevalence. Applying a statistical
correction to account for imperfect sensitivity and specificity, we can obtain more accurate estimates of seroprevalenc
(Figure 5C). For both thmonoplexand multiplex seological assays, thadjustedestimates are not accurate for high

false positive rates.

Figure 5BC presents the scenario when seroprevalence is known to be 5%. In real applidatierseroprevalencés

not knowna priori Fora range okeroprevalencérom 0.1% to 100%, Figure 5D presedtsop * }( $Z semaiti@tye

and specificity thahave been optimizetb minimize the expected relative errdfor amonoplexassay based on ar"

IgG antibodiesif true sergorevalence <20% the relative erris minimized when we select specificity >99%. Winea
seroprevalence <2% the relative error is minimized when specificity = 100%. For a multiplex serologicél tagsay,
seroprevalence <30%he relative error is minimized when we implement an aigfon with specificity = 100%-igure

5E presents a comparison of the expected relative error fornlomoplexand multiplex assayg.he expected relative
error depends on the possible values of sensitivity and specificity, as well as the uncertaintyeirestienateskor true
seroprevalence >2% th@monoplexassay has lower error (a consequence of the lower levels of variation in the ROC

curve). For true seroprevalence <2%, the multiplex assay has lower error, a consequence of the high levels of.specifici
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Figure 5: Implementation of seroprevalence surveygA) Receiver Operating Characteristic (ROC) analysis with -vadstated
uncertainty. Solid lines represent median ROC curves and shaded regions represemtc@btdintyintervals for specificity(B) In a
scenario with true seroprevalence = 5%, the measured seroprevalence depeitlis false positive rate (= 1 specificity) Results

for the monoplex ants" IgG assay are shown on the left, and results for the multiplex assay are shown on th@jigha& scenario

with true seroprevalence = 5%, adjusted seroprevalence estimates are obtained by accounting for assay sensitivity anitgt. specifi
(D) Acrossa range of true seroprevalence, optimal values of sensitivity and specificity can be selected to minimize the expectec
relative error in seroprevalence surveyg)The expected relative error for optimal values of sensitivity and specificity.

17



Discussion

Infection with SARE0V2 induces antibodies of multiple isotypes (19G, IgM, IgA) targeting multiple epitopsgilan
proteinsexposedon the virus surfaceand nucleoprotein Each of these biomarkers may exhibit distinct kinetics leading
to variation in thér potential diagnostic performance. There is also substantial betweeividual variation in the
antibody response generated following SARS/2 infection. By measuring multiple biomarkers in large numbers of
individuals, it is possible to create a skgical signature of nrgvious infection [L7-19]. Although necessarily more
complex than a single measured antibody response, such an approach has the potential of providing more accure

classification and being more stable over time.

IgG antibody levelso a single antigen (trimeric Spike) can classify samples from individuals previously infected witt
SARE0V2 with 91.6% sensitivity (95% CI7.8%, %1.5%) and 99.1% specificity (95% CI: 97.4%, 99.Kéasuring
additional biomarkers with a multiplexssay can improvelassification performance to 98.8% sensitivity (95% CI: 96.5%,
99.6%) and 99.3% specifici850o CI97.6%, 99.8%)A similar phenomenois observed for serologicaliagnosis of HIV
where combiing multiple assag can lead tamprovedaccuracy[34]. Multiplex assays provide some of the benefits of
combiningseparateassays, but are subject the risk that multiple biomarkermeasured orthe same assay are often
correlated. An additional role for high accuracy multiplex assays is asadseg assay after initial screening with point

of-care rapid serological tests.

The reported accuracy of serological tests depends on multiple factors, most notablalidation samples used.
Soecificity is typically determined by pepidemic negativeeontrol sanples, with the inclusion of greater numbers of
samples providing moreobust characterization of specificitiRather than taking large numbers of samples from a
homogeneous population, we encourage the utilization of multiple negative contrmlpahat are epidemiologically
diverse with respect to age and location. Sensitivity is determined by positive control samples. It may be trivial to recor
high sensitivity when validating with samples from small numbers of individuals with severe sysnf3sinWe
encourage the use of multiple panels of positive control panels that are epidemiologically diverse with regpettiro

such asage, COVH29 symptom severity, and time since symptorid¢hen comparing the performance diifferent
assaysthe ideal approach is to use common serum samgieshe majority of situations where common serum samples
are not available, including epidemiological information on validation samples can facilitate more effective comparisol

between assays.

The longterm kinetics of the antibody response to SAB®V2 will not be definitively quantified until infected
individuals are followed longitudinally for months aedenyears after RGPCRonfirmedinfection. As we wait for this
data to be collected, mthematicalmodelscan provide important insights into how SAR®V2 antibody levelsnay
change over timeModelling beyond the timeframe for which we have data has its limitations, however our approach
benefits from robust quantification of uncertaingccountng for a wide range of future scenarios. Furthermore, this

modelling approach provides falsifiable predictions which will allow models to be updated a@samarand others
18



generate new dataFor the purpose of evaluation of antibody kinetics, measured antiredponses from samples

collected from individuals followed longitudinally after confirmed S&RE2 infection will be especially valuable.

The simulations presented here predict tHatlowing SARE0V2 infection, antibody responses will increasgidly 1-2
weeksafter symptom onset, with antibody responses peaking withih ®eeks. After this peak, antibody responses are
predicted to decline according to a-phasic pattern, with rapid decay in the first thrée sixmonths followed by a
slower rate ofdecay. Model predictions of the rise and peak of antibody response are informeth@hyare consistent
with, many sources of datd (-14,36]. Model predictions of the decay of antibody responses are strongly determined by
prior information on longitudinafollow-up of individuals infected with other coronavirus&6{31]. Under the scenario
that the decay of SARS0\2 antibody responses is similar to that of SARY, we would expect substantial reductions
in antibody levels within the first year afterfection. For the seropositivity cutoffs highlighted here, tbisild cause
approximately50%- 90%o0f individualsto test seronegative after one year, depending on the exact choice of biomarker

and seropositivity cubff.

This presents a potential problefor SAR®0VV2 serological diagnostics. Most commercially availalidgnostic tests
compare antibody responses to a fixed seropositivity cutoff. Where these cutoffs have been validated, it is typically b
comparison of serum from negative control samptefiected preepidemic with serum from hospitalized patients in the
first weeks of infection (i.e. when antibody responses are likely to be at their higl3Zs3g]. If we fail to account for
antibody kinetics, we riskcorrectly classifying individualgith old infections (e.g. >6 months) as seronegatiiis is
particularly important for pointof-care rapid serological tests with fixed cutoffs, limited dynamic range and visual
evaluation. If inappropriate tests are us@tseroprevalence surveys, theig a risk of substantial undestimation of

the proportion ofpreviouslyinfected individuals.

An advantage of continuous multiplex data is that different algorithms can be applied to the same data for differen
epidemiological applications. Table 2 assesses classification performance against three targsttedfédmultiplex
combination of antigns to optimize classificatioof individual sampleagainst a target afnaximizing sensitivity given a
minimum specificity of 99%-lowever, atest that is optimal for individudevel classification is not necessarily optimal

for populationlevel use Arecommended target for serological assays for smroveillance surveys is to minimize the
expected error in estimated seroprevalence. For scenarios where we expect low true seroprevalenceweXbihy

that assays with high specificity (>99%) are opti(R@dure 5). Notably this provides a potential solution to the challenge
of implementing seresurveillance studies in regions where seroprevalence is expected to be lower than commonly
reported false positive rates39]. This is possible because our asshgws 100% specificity to be achieved with an
accompanying reduction in sensitivitigat can be statistically accounted fdn low seroprevalencsettingsthere are

additional challenges in collecting sufficient numbers of samples to ensure statistatallst estimates40)].

There are a large number of immunological assays capable of measuring the antibody responseGo\&ARE8uding

neutralization assaysELISA, Luminekxuciferase Immunoprecipitation System (LJA®)ptide microarrays and more
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[40,41]. Fom the perspective of quantifying protective immunand vaccine development, functional approaches such
as neutelization assays are clearly preferable. However, from a surveillance and diagnostics perspective, assays sho
be assessed in ters of theirperformance at classifying individuals wipheviousRTFgPCR confirmed infectiodf. the

target is to diagnose someondt, does not matter what a biomarker does, only that can be reliably deteced in

previouslyinfected individuals and not in uninfected individuals.

Beyond diagnosticsassessmenof antibody kineticsnay contribute to better understanding of the immune responses
generated by SARSoV2 vaccines[42]. Statistical models can be used to identify nimmnological correlates of
protection, at least according to conditions such as the Prentice critedidd4]. An estimated correlate of protection
may take the form of a dosesponse relationship, with higher antibody levels associated with greatemeaetficacy.
Under the assumption that a correlate of protection can be identifiethdels of antibody kinetics can be used to

provide preliminary estimates of the duration of protection following vaccination or natural infecti®aq].

The analysis prested here is based on limited data, and the predictions may subsequently be contradicted as more
data become available. Howevéhge concepts outlined here of serological signatures of SBMREK infection generated
by multiplex assaysind mathematical madelsof antibody kineticsallow us to plan in advance for some of the future

challenges that we may face in SARS/2 serological surveillance.
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Supplementary Tabl&L: List of antigens included in the multiplex serological assay.

supplier, catalog

category short name recombinant antigen expression system number
SAREoV2 S" SARS0V2 Trimeric Spike protein HEK293 Institut Pasteur, Paris
: : Native Antigen
SARE0V2 RBL, SARS0V2 Spike Glycoprotei(51) RBD CHO REC3183100
SARE0V2 RBLQ), SARS0V2 Spike Glycoprotei(51) RBD HEK293 Institut Pasteur, Paris
SAREOV2  S1 SAR0V2 Spike GlycoproteifS1) HEK293 Native Antigen
pike Llycop REC3180600
. . Native Antigen
SARE0V2 S2 SARE0V2 Spike Glycoprotei(52) HEK293 REC3180700
SARE0V2 NR, SAREC0V2 Nucleoprotein E. coli Institut Pasteur, Paris
. : Native Antigen
SARE0V2 NR, SAREC0Vf2 Nucleoprotein E. coli REC3181200
seasonal . . . Native Antigen,
coronavirus 229ENP Human Coronavirus 229E Nucleoprotein E. coli REC3175800
seasonal . . . Native Antigen
coronavirus NL63NP Human Coronavirus NL63 Nucleoprotein E. coli REC3175900
internal Influenza virus H1Nfkaemagglutinin Native AntigenFLU
controls FluA recombinant antigen HEK293 H1INZHA100
internal . . Native Antigen
controls Ade40 Adenovirus type 4Biexon (capside) HEK293 NAT41552100
internal Rubella virudike particles Native Antigen
controls Rub (spike glycoprotein E1, spikgycoprotein E2 HEK293 REC3165100

and Capsid protein)

24



25



Supplementary Tabl&2: Comparison of classification performance between biomarkers for a high specificity target (>99%). Pairwise comparisaies @ssmgia
D E u (&gt. The above diagonal element shows the odds ratio with 95% confidence intervals. Odds ratio > 1 indithiestdrker indicated by the row has
better classification than the biomarker indicated by the column. The corresponding element below the diagonal presentdilee P

s RBD: | RBO: S1 S2 NR,1 NR,, s" RBO:, | RBQ, | S1 S2 NP1 NR,
IgG IgG 19G IgG 19G IgG 19G IgM IgM IgM IgM IgM IgM IgM
Ti 13.75 5.3 Inf 87 6.8 9 220 20.3 255 107 Inf 100.5 65
g I G (5.1,523) (2.7,117) (30.1,Inf) (15.2,3475) (34,15.5) (4.1,23) (391, 8729) (7.6,76.1) (9.7,954) (293,889) (64.0,Inf) (275, 8356) (21.9,317.9)
1aG 10 0.76 5.77 2.35 1.04 1.2 43 2.18 3.35 41.25 Inf 25.67 21.1
RBDl g <10 (0.4,1.3) (32,11.3) (15,39) (0.6,1.8) (0.7,2.1) (165, 159.6) (1.3,3.8) (2.0,5.8) (15.8,1532) (502, Inf) (11.5,71.0) (10.0,53.5)
1aG 8 15 2.87 1.23 1.33 45 2.06 3.0 29.17 66 32.2 25.83
RBDZ 9 3.4x 10 0.36 (6.1,47.5) (1.76,4.83) (08,1.9) (09,2.0) (173, 166.9) (1.3,3.3) (1.9,4.9) (13.1,80.6) (223,3228) (13.5,100.5) (11.6,715)
s1 lgG < 10% < 10% <10 0.4 0.25 0.28 14.25 0.48 0.75 8.62 32.25 9.6 7.08
(0.22,0.7) (0.14,0.41) (0.17,0.45) (6.99,33.8) (0.31,0.73) (0.5,1.12) (4.8,16.7) (12.3,1202) (5,20.7) (3.9,138)
1aG 10 0.47 0.48 20 0.83 1.27 11.5 26.33 11.27 8.57
82 g <10 2.2x 1d 5.7x 163 9.0x 104 (0.29,0.73) (0.3,0.77) (9.5,50.7) (0.55,1.26) (0.84,1.92) (64,22.8) (11.8,72.8) (6.1,232) (4.9,162)
1aG 10 0 1.57 56.67 1.89 2.92 54.33 187 30.4 29
NRll 9 <10 10 0.39 7.0x 10 5.9x 10 (0.56,4.78) (191, 277.5) (1.18,3.11) | (1.81,4.85) | (18.27,266.2) | (332,7425.1) | (128,94.9) (122,907)
10G 10 0.48 28.17 1.7 2.62 32.2 183 18.88 16.11
NR 9 <10 0.59 0.21 1.0x10 1.6 x 10 (12.7,77.8) (1.06,2.76) | (1.6,4.3) (13.5,100.5) | (32.4,7267) (9.3,44.5) (83,35.9)
ri 10 10 10 10 10 10 10 0.01 0.02 0.53 3.11 0.44 0.36
g IgM <10 <10 <10 <10 <10 <10 <10 (0,0.05) (0,0.06) (0.2,1.34) (1.43,7.49) (0.23,0.82) (0.18,0.66)
laM 10 4 10 Inf 68.5 162 41.67 24
RBDO, |9 <10 26x10 | 7.7x10 | 4.7x 10 0.42 7.3x10 0.026 <10 Gouny | (ses7is) | @eressn | (secoas | 1075.26)
laM 10 10 39 47.67 26.25 14.43
RBD, |9 <10 43x10 | 1.3x10 | 0.17 0.28 2.2x 10 1.7x10 <10 9.5x 10 (13019L.8) | (160.2339) | (0059613 | (696368
laM 10 10 10 10 10 10 10 10 10 7.5 0.59 0.47
S1 g <10 <10 <10 <10 <10 <10 <10 0.21 <10 <10 (26203) 032108 | 025085
laM 10 10 10 10 10 10 10 10 10 6 0.13 0.12
S2 g <10 <10 <10 <10 <10 <10 <10 26x10 | <10 <10 6.2 x 10 005031 | (©0a027)
NR, |!OM [|<10® |[<10° |<10° <10° <10° <10° <10° 7.8x10° | <10° | <10° | 0.092 1.8x10° P
NR IgM <10° | <10° | <10° <10 <10% <10% <10% 46x10° | <10 |<10° |oo01 3.0x10% | 0039
V2




Supplementary Tabl&3: Model predicted reductions in antibody levels and sensitivity at 6 and 12 months after symptom Alhset.
results are shown for a high specificity targe®9%).

model predicted reduction in  cutoff model predicted sensitivity

antibody levek antibody

6 months 12 months  dilution 6 months 12 months
Single biomarkers
S19G 23.3% 47.1% 0.00012 94.8% 88.7%%

(3.6%, 85.4%) (17.5%, 90.3%) (71.4%, 99.2%) (63.4%, 97.4%)
RBD IgG 22.1% 44.3% 0.000024 89.™%6 86.%%

(1.9%, 94.8%) (13.9%, 96.0%) (74.2%, 99.2%)  (70.1%, 98.7%)
RBD, IgG 23.2% 44.6% 0.000226 67.8% 56.7%6

(3.4%, 80.4%) (16.1%, 85.8%) (46.6%, 80.7%) (37.9%, 73.2%)
S119G 20.2% 44.0% 0.000700 49.2%0 41.2%

(2.6%,89.9%) (14.6%, 92.4%) (31.7%, 67.6%) (25.5%, 59.8%)
S219G 18.3% 41.%% 0.000479 70.9% 61.6%

(2.1%, 79.5%) (13.5%, 86.5%) (51.0%, 87.7%) (39.9%, 81.0%)
NR1 1gG 27.%% 49.%% 0.00066 69.0% 63.9%

(2.5%, 94.4%) (11.5%, 96.4%) (53.6%, 78.4%) (47.7%, 73.2%)
NR,IgG 25.%% 47.%% 0.00080 65.9% 57. ™6

(1.6%, 97.2%) (7.8%, 98.4%) (49.0%, 77.8%) (43.8%, 74.3%)
Multiplex combinations
S"IgG+ RBR IgG t t t 97.9% 95.4%

_ (89.5%, 100.0%) (82.3%, 99.6%)

S"1gG+ RBRy IgG + t t t 98.4% 95.9%
NR. 1gG (91.2%, 100.0%) (83.9%, 99.6%)
S"1gG+ RBRy IgG + t t t 98.9% 96.4%
NR,.1gG + S2 1gG (86.1%, 100.0%) (80.9%, 100.0%)
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Supplementary Figur&L: Quantification of uncertainty for serological classificatioResults are shown for a single antigefi)(8G

assay in red, and sixantigen multiplex classifier in blagld) hv €S J]vSC <S]u § MHe]vP t]Joe}v[e ]Jv}iu] o u 8§z
from al samples. Uncertainty in specificity at fixed sensitivity, and variation in sensitivity at fixed specificity are showatese Ay
Uncertainty estimated using 10€0ld crossvalidation with training (2/3 of samples) and testing (1/3 of samples) dets.

Uncertainty in specificity at fixed sensitivity, and variation in sensitivity at fixed specificity are shown sep&a@gsspanel

validation. The title of each plot denotes the panels that were used for testing, while the other panels wer®usaining.
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Appendix Mathematical nodelling of the duration of the aniSARSCo\2
antibody response

Overview

There are limited available longitudinal data on SARS2 antibody kinetics, and no data from lotegyrm follow-up (as
of June 2020). However, there are a number of published studies on the-termmg antibody kinetics to other
coronavirusesmost notably Severe Acute Respiratory Syndrome coronavirus {S®\RSHere we review some of the
available published data, and describe htivis can be used to provide prior information for modelling SSRS2

antibody kinetics.

Prior longitudinal data on longerm antibody responses to coronaviruses

Appendix Table AL summarises some of the published data on the lwrgh antibody kineticsto a number of
coronaviruses: SAR®YV, human seasonal coronavirus 229E, and Middle East Respiratory Syndrome coronavirus (MEF
CoV). From the extracted time series, we estimated two summary statistics characterizing thHertongntibody
response: the Alf-life of the longlived component of the antibody response, and the percentage reduction in antibody
response after one year. The héifé of the longlived component of the antibody response was estimated by fitting a
linear regression model to meagments of (log) antibody response taken greater than six months after symptom
onset. The percentage reduction in antibody response after one year was estimated based on the reduction from th
peak measured antibody response to the estinthémtibody levelat one year. Although a wide range of assays from
ELISA to microeutralisation were used in the reviewed studies, in this simple and approximate analysis we did not

attempt to account for assay dependent effeascept to subtract background antibody kg where necessary.

Based on the estimated summary statistics, we assume that thettonglgG antibody kinetics can be characterized as
having a haHfife of d, = 400 days with a 60% reduction after one year. In terms of the parameters of the mathamatic
model of antibody kinetics, this correspondsgor estimates of; = log(2)H, = 0.0017 andE& 0.9. For sensitivity

analyses, we also considered scenarios wiikre200 days and, = 800 days.

For IgM antibody kinetics, we assumdd 100 days andE 0.9.For sensitivity analyses, we also considered scenarios

whered, = 50 days and, = 200 days.
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Appendix Table AL: Prior data on the duration of antibody response® coronaviruses Data from longitudinal studies on
measured antibody levels to SARS coronavirus, seasonal coronavirus 229E, and MERS coronavirus. For each study, the time s
describing the antibody kinetics waxtracted The halflife of the longlived component of te antibody response was estimated
using measurements of antibody response measured after 6 months from symptom omisetsubset of the data used for this
calculationis indicated in bold below. The percentage reduction in antibodies after one yearimatetl based on the reduction

from the peak measured response to the estimate antibody level at year.

study half-life (days)| 1 year
reduction

SARE0V; Wet al. Emerg Inf Dis. 2007; 13(10)

time (days) 180 365 730 1095

lgG 0.96 0638 0.516 0.249 510

SARE0V; Meet al. Respirology. 2006; 11: 43

time (days) 7 15 30 60 90 180 270 360 450 540 720

IgG 001 186 236 283 281 273 238 191 142 100 0.80 181 60%

IgM 001 113 180 130 069 006 001 100%

Nab 001 199 274 251 226 206 183 156 124 096 0.78 277 69%

SAR&0V; Caet al. NEJM. 2007; 357(11)

time (days) 30 120 210 300 480 720 900 1080

IgG 196 244 114 112 64 36 33 28 394 61%

Nab 1034 1254 836 773 960 99 32 32 154 33%

SARE 0V, Liwet al.J Inf Dis. 2006. 193

time (days) 30 120 210 300 480 720

IgG 185 201 115 125 65 32 254 49%

SAREL0V; Tangt al. J Immunol. 2011186:72647268

time (days) 24 120 210 300 480 720 900 1080 1600 2160

IgG 305 252 128 170 66 31 36 33 69 6.0 400 57%

seasonal coronavirus 229E; Callewal. Epid. Inf. 1990; 105: 43516

time (days) 0 21 84 364

IgG 245 318 262 251 191 91%

IgA 261 304 280 266 150 87%

Nab 143 984 546 219 116 91%

MERS CoV; Cheeal. Emerg Inf Dis. 2017; 23(7)

time (days) 15 90 200 300 400

IgG (S1) 139 253 163 156 1.47 915 50%

Case study of earlgtage SARE0v2 antibody kinetics: hospitalized patients in Hong Kong

We performed a secondary analysis of data from patients admitted to Princess Margaret Hospital and Queen Ma
Hospital in Hong Kong, following the primary analysis by To, Eaaldl]. 23 patients with RGPCR confirmed SARS
CoV2 infection were followd longitudinally for up to four weeks after initial onset of symptoms. Ten patients had

severe COVHD9, all of whom required oxygen supplementation, and 13 patients had mild disease.

The Hong Kong based team expressed and purified recombinant proteingedeptorbinding domain (RBD) and
nucleoprotein (NP). Genes encoding the spike RBD (amino acid residues 306 to 543 of the spike protein) and full len

NP of SARSoVf2 were codoroptimized, synthesized and cloned. IgG and IgM antibody responses wanéfed via
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the optical density (OD) from an enzyme immunoassay (EIA). Serial dilutions from 1:100 to 1:16,000 of a positive cont
serum were assayed for IgG responses. This allowed conversion of IgG antibody responses measured by EIA O
dilutions. To determine thesero-positivity cutoff, the mean value of 93 anonymous archived serum specimens from
2018 plus 3 standard deviations was used. The cutoff valges: antiNP 1gG= 0.523 0D, ant-RBD 1gG- 0.108 OD;
anti-NP IgM=0.1770D and antiRBD IgM= 0.085.After conversion of the EIA OD values to dilutions, the -pesitivity
cutoffs for IgG antibody responses were aNf IgG = 0.00682; and aRBD IgG = 0.002665.

Results

Estimated model parameters are presentedAppendixTableA2. AppendixFigureAl provides an overview of the fitted
antibody kinetics to all participants. Detailed individiglel fits to the data, with quantification of uncertainty are
shown inAppendixFiguresA2-A5. Comparing the early kinetics of the IgG and IgM respomsestimatethat the time

to anti-NP 1gG sergonversion was 11.0 days (intguartile range (IQR): 8.1, 11.6), and the time to & IgM sero
conversion was 11.9 days (IQR: 8.4, 15.8). The time teR&1di IgG serconversion was 8.6 days (IQR: 5.3.,4), and

the time to antiNP IgM seraconversion was 11.6 days (IQR: 9.2, 28.6). Although time teceeversion is dependent

on the selection of serpositivity cutoff, this suggests that IgM responses are not induced before IgG responses, anc

that both are generated at approximately the same time.
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AppendixFigureAl: SARSC0V,2 antibody kineticsin Hong Kong patientsAnti-nucleoprotein (NP) and anteceptorbinding
domain (RBD) antibody responses in 22 patients with PCR confirmedCaAR $hfecton admitted to hospitals in Hong Kong.
Measured antibody levels in patients are depicted as points. Measured antibody levels in negative controls are depiossgas cr

Grey lines show posterior median model prediction. The uncertainty of the modelgiced is presented via 95% credible intervals
in Figures S8. The horizontal dashed line represents the cutoff for seositivity.
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Appendix Figure A2: Model fit to shortterm data on antiNP IgG antibody responsedeasured antibody responses

are shown as red points. Posterior median model predictions are shown as black lines, with 95% credible intervals
grey. The horizontal dashed line represents the cutoff for gersitivity. Note that as there is no data on the letegm
antibody response t&AR%C0V2, three different sources of prior information were utilizethe halflife of the long

lived component of the antibody responses was assumed to be 200 days (short prior), 400 days (medium prior), or 8|

days (long prior). Note that each of thieree assumptions give near identical fits for the shmrm kinetics displayed
here.
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AppendixFigureA3: Model fit to short-term data on anttRBDIgG antibody responsedvieasured antibody responses

are shown as red points. Posterior median mopleddictions are shown as black lines, with 95% credible intervals in
grey. The horizontal dashed line represents the cutoff for gersitivity. Note that as there is no data on the letegm
antibody response to SAR®V2, three different sources of prianformation were utilized. The halife of the long

lived component of the antibody responses was assumed to be 200 days (short prior), 400 days (medium prior), or 8|

days (long prior). Note that each of the three assumptions give near identicabffithe shortterm kinetics displayed
here.

34



Appendix FigureAd: Model fit to short-term data on antiNP IgV antibody responsesMeasured antibody responses

are shown as red points. Posterior median model predictions are shown as black lines, with 9iflé arextvals in

grey. The horizontal dashed line represents the cutoff for gersitivity. Note that as there is no data on the letegm
antibody response to SAR®V2, three different sources of prior information were utilized. The Hidf of the bng

lived component of the antibody responses was assumed to be 50 days (short prior), 100 days (medium prior), or 2

days (long prior). Note that each of the three assumptions give near identical fits for thetsharkinetics displayed
here.
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Appendi FigureA5: Model fit to short-term data on antiRBDIgM antibody responsesMeasured antibody responses

are shown as red points. Posterior median model predictions are shown as black lines, with 95% credible intervals
grey. The horizontal dashed linepresents the cutoff for serpositivity. Note that as there is no data on the leiegm
antibody response to SAR®V2, three different sources of prior information were utilized. The Hi#df of the long

lived component of the antibody responses wasamed to be 50 days (short prior), 100 days (medium prior), or 200

days (long prior). Note that each of the three assumptions give near identical fits for thetsharkinetics displayed
here.
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AppendixTableA2: Parameter estimatedor antibody kinetics model fitted to Hong Kong dat®arameters of the

antibody kinetics model are presented as posterior medians with 95% credible intervals. The model is fitted in a mixed
effects framework, so for every parameter we estimate the disttion within the entire population rather than a fixed
value. We present the mean and standard deviation as summary statistics for the estimated distributions

description parameter | prior NP 1gG RBD IgG NP IgM RBD IgM
mean of populatiodevel distribution
background IgG level Ang 0.001 0.0001 0.0015 t t
(1.1x10° 1.2) (2.6x10° 0.0003 (0.00130.001%
background IgM level Ang 0.03 t t 0.049 0.036
(0.001,1.0) (0.043,0.054) (0.0320.04
ASC boost in mildases (IgG) tmig 0.01 0.014 0.028 t t
(0.0001,1.2) (0.006 0.051) (0.0015, 0.00%3)
ASC boost in mild cases (IgN tmigq 0.11 t t 0.085 0.08
(0.01,1.2 (0.048,0.17) (0.04,0.16
ASC boost ineverecases tsey 0.01 0.028 0.00% t t
(IgG) (0.0001,1.2) (0.01,0.207) (0.0034 0.009)
ASC boost iseverecases tsev 0.11 t t 0.67 0.14
(IgM) (0.0, 1.2 (0.29,2.8) (0.07,0.46)
delay in generation of . 5.4 9.6 7.8 7.9 8.7
antibody response (days) (2.5,15.1) (7.7,11.9) (5.6,11.7) (6.4,9.8) (7.0,10.7)
half-life of memory cells dn, 2.1 2.0 1.8 2.0 2.2
(days) (1.5, 4.0 (1.3,7.8) (1.3, 2.8) (1.35.7) (15,4.9
half-life of shortlived ASCs  ds 3.2 2.5 24 24 28
(days) (1.9,9.2 (18,4.2) (18,37 (1.7,38) (2.0,4.7)
half-life of longlived ASCs 4, 400 408 417 t t
(days) (IgG) (302,567 (227,727 (230, 771)
halflife of longlived ASCs 4, 100 t t 104 103
(days) (IgM) (76,142 (68,163 (66, 167)
half-life of IgG molecules da 21 435 213 t t
(days) (187, 24-1) (25-7, 2436) (184, 287)
half-life of IgM molecules da 10 t t 10.8 102
(days) (9.1,115) (9.3,164.2) (9.2,13.2)
proportion of shortlived & 90% 90% 80% 93% 89%
ASCs (65%, B%) (7%, 91%) (57%, 91%) (65%, T%) (62%, B%)
standard deviation of populatielevel distribution
background IgG level Ao 0.0006 5.7x10° 0.0004 t t
(6x107,0.8) (1.0x10°, 0.00013  (0.0003, 0.0005)
background IgM level Ang 0.01 t t 0.01 0.008
(0.00030.5) (0.007,0.015) (0.006 0.011)
ASC boost in mild cases (IgC tmigq 0.006 0.020 0.0017 t t
(5.4x1C°, 0.9) (0.006 0.23) (0.0007, 0.005)
ASC boost in mild cases (Igh tmig 0.06 t t 0.045 0.06
(0.004 1.1) (0.020,0.17) (0.03 0.22)
ASC boost iseverecases tsev 0.006 0.048 0.0030 t t
(IgG) (5.4x1C°, 0.9) (0.01, 2.0) (0.0015,0.008
ASC boost iseverecases tsev 0.06 t t 0.55 0.17
(IgM) (0.004 1.1) (0.19,4.9) (0.06,1.4)
delay in generation of . 35 4.2 6.5 3.5 38
antibody response (days) (12349 (28,69 (38,175 (23,5.9) (26,64
half-life of memory cells dn, 1.1 1.8 1.0 1.8 1.8
(days) (057.2 (0.6,35.3) (0.5,3.5) (0.6,185) (0.7,11.87)
half-life of shortlived ASCs  ds 2.3 1.3 1.2 12 1.6
(days) (0.9,29.2 (0.6,35) (0.6,2.8) (06,3.1) (07, 4.6)
half-life of longlived ASCs 4, 109 111 114 t t
(days) (IgG) (56,349 (47,389 (47,404
half-life of longlived ASCs d 22 t t 22 23
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(days) (Ity1) (10, 69) (11,67 (11,73
half-life of IgG molecules da 32 840 54 t t
(days) (18,8.6) (22, 2808) (2:0,27)

half-life of IgM molecules da 22 t t 4.4 2.6
(days) (1.2,6.2) (15,2770 (13,12
proportion of shortlived & 0.07 0.06 0.25 0.08 0.18
ASCs (0.02, 0.40) (0.02,0.26) (0.04,0.45) (0.02,0.42) (0.02,0.44)
observational variance

standard deviation for ELISA e, 0-004 0-0026 0-0011 t t
measurements (IgG) (00002 0-1) (0-0023, 0-0030) (00009, 0-0013)

standard deviation for ELISA e, 0-04 t t 0-031 0-022
measurements (Ig) (0002 1) (0:025,0.037) (0:019,0.023
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AppendixTableA3: Parameter estimategor antibody kinetics model fitted to France datd&arameters of the antibody kinetics model are presented as
posterior medians with 95% credible intervalBhe model is fitted in a mixeeffects framework, so for every parameter we estimate the distribution within the

entire population rather than a fixed value. We present the mean and standard deviation as summary statistics for thecedtstrdoutiors

description parameter | prior s" RBDQ; RBDQ, S1 S2 NP, NP,
mean of populatiodevel distribution
background IgG level Ay, 0.001 2.8x10° 2.1x10° 4.2x10° 5.2x10° 45x10° 5.4x10° 8.1x10°
(1.1x10°, 1.1)  (2.6x10° 3.0x10°)  (2.0x10°% 2.3x10%)  (3.8x10° 4.7x10°)  (4.7x10° 5.9x10°)  (4.0x10° 5.0x10°)  (4.5x10° 6.5x10°) (7.1x1(15,
9.4x10°)
ASC boost t 0.01 0.00aL4 3.9x10° 8.2x10° 0.000D 0.00QL7 0.040 0.049
(0.0001,1.2) (9.7x10°, 0.00®@)  (2.6x10°6.4x10°)  (5.5x10° 0.002) (0.00012,0.00(82) (0.00al2, 0.00@6)  (0.0013 0.016) (0.0014 0.@3)
delay in generation of . 5.4 8.0 9.8 6.4 9.3 9.7 8.4 8.5
antibody response (days (2.5, 15.1) (6.0,9.8) (7.6,115) (4.1,85) (6.7,11.3) (7.7,11.4) (5.8,10.6) (5.6,10.8)
half-life of memory cells d,, 2.1 18 2.2 1.8 2.0 18 24 25
(days) (1.5, 4.0) (14,23) (16,4.0 (14,23) (1.5,2.8) (1.5, 24) (16,15.5) (16, 28.7)
half-life of shortlived ds 3.2 29 3.0 2.8 3.0 31 3.0 3.0
ASCs (days) (.9,9.2) (21,42 (2.2, 43) (21, 40) (2.2,4.3) (22, 45) (2.2,4.2) (2.2, 43)
half-life of longlived d 400 411 416 410 413 415 416 406
ASCs (days) (302, 567) (229, 752 (233, 745) (228, 752) (228, 746) (233, 760) (226, 775) (223, 739)
half-life of IgG molecules d, 21 213 213 213 214 214 21.2 21-2
(days) (18-7,24.1) (189, 24.0) (189, 239) (188, 2.0) (189, 24-1) (19-0, 24-1) (188, 239) (18-8, 2-0)
proportion of shortlived & 90% 72% 85% 75% 78% 70% 80% 81%
ASCs (65%, 95%)  (56%, 2%) (0%, 919%) (57%, 93%) (56%, BY%) (55%, 2%) (57%, 91%) (0%, 919%)
standard deviation of populaticlevel distribution
background IgG level Ay 0.0006 1.3x10° 8.7x10° 2.8x10° 3.2x10° 2.9x10° 4.2x10° 5.5x10°
(6x107, 0.8) (1.1x10°% 1.6x10%)  (7.5x10°% 10x10%) (2.3x10° 35x10°) (2.6x10° 4.1x10°)  (2.3x10°,3.7x10°)  (3.0x10° 5.9x10°) (4.2x105;,
7.4x10
ASC boost t 0.006 0.00L4 5.6x10° 8.5x10° 0.00(B4 0.00@ 0.4 0.073
(5.4x10°,0.9) (8.8x10°, 0.00®@)  (2.8x10° 0.00012) (4.8x10° 3.5x10°)  (0.00QL7, 0.0D76) (0.000L, 0.00G%) (0.004 053) (0.0064 1.13)
delay in generation of . 3.5 34 33 2.6 3.2 33 2.7 28
antibody response (days (1.2, 34.6) (2.5,4.5) (2.5,4.3) (1.6,3.9) (2.4,4.2) (2.6,4.3) (1.9,3.8) (1.9,3.9)
half-life of memory cells d,, 11 11 2.2 11 15 12 29 3.2
(days) (0.5,7.2) (0.6,2.0) (09,9.2) (0.7, 22) (0.8,4.0) (0.7,2.4) (09,162 (09,533
half-life of shortlived ds 2.3 10 1.1 10 1.1 1.1 1.1 1.1
ASCgdays) (0.9, 29.2) (0.6, 20) (0.6, 22) (0.6, 22) (0.6,2.1) (0.6, 22) (0.6,2.1) (0.6,2.1)
half-life of longlived d 109 11 113 11 112 113 113 109
ASCs (days) (56, 349) (46, 384) (48,371 (47,396 (47,377 (46, 392) (46,394 (45, 359)
half-life of IgG molecules d, 3:2 32 32 32 32 32 32 32
(days) (18, 8.6) (1.8, 7) (18,72 (18, 71) (1.8, 71) (1-8,6.9) (18, 70) (18, 70)
proportion of shortlived & 0.07 0.30 001 0.28 0.19 0.32 0.19 0.06
ASCs (0.02,0.40) (0.015, 0.45) (0.0, 0.8) (0.012, 0.45) (0.0035 0.44) (0.02, 0.4) (0.0@8, 0.45) (0.0, 0.45)
observational variance
log scale standard Ui 0-71 047 0.53 0.59 0.67 0.67 111 0.91
deviation for Luminex (0-18,2.75)  (042,0.53 (0.47,0.58 (0-51, 0.66) (060,0.75 (060,0.79 (0.98 126) (0.81, 102
measurements
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