
�>���G �A�/�, �T���b�i�2�m�`�@�y�k�8�e�N�R�9�N

�?�i�i�T�b�,�f�f�?���H�@�T���b�i�2�m�`�X���`�+�?�B�p�2�b�@�Q�m�p�2�`�i�2�b�X�7�`�f�T���b�i�2�m�`�@�y�k�8�e�N�R�9�N�p�k

�S�`�2�T�`�B�M�i �b�m�#�K�B�i�i�2�/ �Q�M �k�e �C�m�M �k�y�k�y

�>���G �B�b �� �K�m�H�i�B�@�/�B�b�+�B�T�H�B�M���`�v �Q�T�2�M ���+�+�2�b�b
���`�+�?�B�p�2 �7�Q�` �i�?�2 �/�2�T�Q�b�B�i ���M�/ �/�B�b�b�2�K�B�M���i�B�Q�M �Q�7 �b�+�B�@
�2�M�i�B�}�+ �`�2�b�2���`�+�? �/�Q�+�m�K�2�M�i�b�- �r�?�2�i�?�2�` �i�?�2�v ���`�2 �T�m�#�@
�H�B�b�?�2�/ �Q�` �M�Q�i�X �h�?�2 �/�Q�+�m�K�2�M�i�b �K���v �+�Q�K�2 �7�`�Q�K
�i�2���+�?�B�M�; ���M�/ �`�2�b�2���`�+�? �B�M�b�i�B�i�m�i�B�Q�M�b �B�M �6�`���M�+�2 �Q�`
���#�`�Q���/�- �Q�` �7�`�Q�K �T�m�#�H�B�+ �Q�` �T�`�B�p���i�2 �`�2�b�2���`�+�? �+�2�M�i�2�`�b�X

�G�ö���`�+�?�B�p�2 �Q�m�p�2�`�i�2 �T�H�m�`�B�/�B�b�+�B�T�H�B�M���B�`�2�>���G�- �2�b�i
�/�2�b�i�B�M�û�2 ���m �/�û�T�¬�i �2�i �¨ �H�� �/�B�z�m�b�B�Q�M �/�2 �/�Q�+�m�K�2�M�i�b
�b�+�B�2�M�i�B�}�[�m�2�b �/�2 �M�B�p�2���m �`�2�+�?�2�`�+�?�2�- �T�m�#�H�B�û�b �Q�m �M�Q�M�-
�û�K���M���M�i �/�2�b �û�i���#�H�B�b�b�2�K�2�M�i�b �/�ö�2�M�b�2�B�;�M�2�K�2�M�i �2�i �/�2
�`�2�+�?�2�`�+�?�2 �7�`���M�Ï���B�b �Q�m �û�i�`���M�;�2�`�b�- �/�2�b �H���#�Q�`���i�Q�B�`�2�b
�T�m�#�H�B�+�b �Q�m �T�`�B�p�û�b�X

�.�B�b�i�`�B�#�m�i�2�/ �m�M�/�2�` �� �*�`�2���i�B�p�2 �*�Q�K�K�Q�M�b���i�i�`�B�#�m�i�B�Q�M �@ �L�Q�M�*�Q�K�K�2�`�+�B���H �@ �L�Q�.�2�`�B�p���i�B�p�2�b�% �9�X�y
�A�M�i�2�`�M���i�B�Q�M���H �G�B�+�2�M�b�2

�a�2�`�Q�H�Q�;�B�+���H �b�B�;�M���i�m�`�2�b �Q�7 �a���_�a�@�*�Q�o�@�k �B�M�7�2�+�i�B�Q�M�,
�A�K�T�H�B�+���i�B�Q�M�b �7�Q�` ���M�i�B�#�Q�/�v�@�#���b�2�/ �/�B���;�M�Q�b�i�B�+�b

�C���b�Q�M �_�Q�b���/�Q�- �a�i�û�T�?���M�2 �S�2�H�H�2���m�- �*�?���`�H�Q�i�i�2 �*�Q�+�F�`���K�- �a���`���? �J�2�`�F�H�B�M�;�-

�L���`�B�K���M�2 �L�2�F�F���#�- �*���`�Q�H�B�M�2 �.�2�K�2�`�2�i�- ���M�M���H�B�b�� �J�2�Q�H���- �a�Q�H�2�M �E�2�`�M�û�B�b�-

�"�2�M�D���K�B�M �h�2�`�`�B�2�`�- �a���K�B�`�� �6���}�@�E�`�2�K�2�`�- �2�i ���H�X

�h�Q �+�B�i�2 �i�?�B�b �p�2�`�b�B�Q�M�,

�C���b�Q�M �_�Q�b���/�Q�- �a�i�û�T�?���M�2 �S�2�H�H�2���m�- �*�?���`�H�Q�i�i�2 �*�Q�+�F�`���K�- �a���`���? �J�2�`�F�H�B�M�;�- �L���`�B�K���M�2 �L�2�F�F���#�- �2�i ���H�X�X
�a�2�`�Q�H�Q�;�B�+���H �b�B�;�M���i�m�`�2�b �Q�7 �a���_�a�@�*�Q�o�@�k �B�M�7�2�+�i�B�Q�M�, �A�K�T�H�B�+���i�B�Q�M�b �7�Q�` ���M�i�B�#�Q�/�v�@�#���b�2�/ �/�B���;�M�Q�b�i�B�+�b�X �k�y�k�y�X
���T���b�i�2�m�`�@�y�k�8�e�N�R�9�N�p�k��

https://hal-pasteur.archives-ouvertes.fr/pasteur-02569149v2
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


1 
 

Serological signatures of SARS-CoV-2 infection: Implications for 
antibody-based diagnostics 
Jason ROSADO1,2, Stéphane PELLEAU1, Charlotte COCKRAM3, Sarah Hélène MERKLING4, Narimane NEKKAB1, Caroline 
DEMERET5, Annalisa MEOLA6, Solen KERNEIS7,8, Benjamin TERRIER9,10, Samira FAFI-KREMER11,12, Jerome de SEZE13, 
François DEJARDIN14, Stéphane PETRES14, Rhea LONGLEY15,16, Marija BACKOVIC6, Ivo MUELLER1,15,16, Michael T WHITE1*  

1. Malaria: Parasites and Hosts Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France 
2. Sorbonne Université, ED 393, F-75005 Paris, France 
3. Spatial Regulation of Genomes Unit, Department of Genomes and Genetics, Institut Pasteur, Paris, France 
4. Insect-Virus Interactions Unit, Department of Virology, Institut Pasteur, Paris, France 
5. Molecular Genetics of RNA Viruses Unit, Department of Virology, Institut Pasteur, Paris, France 
6. Structural Virology Unit, Department of Virology and CNRS UMR 3569, Institut Pasteur, Paris, France 
7. ���‹�µ�]�‰�����D�}���]�o�������[�/�v�(�����š�]�}�o�}�P�]���U�����W�,�W�������v�š�Œe-Université de Paris, Paris, France 
8. Epidemiology and Modelling of Bacterial Escape to Antimicrobials Unit, Department of Global Health, Institut Pasteur, Paris, 

France 
9. Department of Internal Medicine, National Referral Center for Rare Systemic Autoimmune Diseases, Assistance Publique 

Hôpitaux de Paris-Centre (APHP-CUP), Université de Paris, Paris, France 
10. PARCC, INSERM U970, Paris, France 
11. CHU de Strasbourg, Laboratoire de Virologie, F-67091 Strasbourg, France 
12. Université de Strasbourg, INSERM, IRM UMR_S 1109, Strasbourg, France 
13. Centre d'Investigation Clinique - INSERM CIC-1434, Strasbourg, France 
14. Production and Purification of Recombinant Proteins Technological Platform, Center for Technological Resources and 

Research, Institut Pasteur, Paris, France 
15. Division of Population Health and Immunity, The Walter and Eliza Hall Institute, Melbourne, Australia 
16. Department of Medical Biology, University of Melbourne, Melbourne, Australia 

*Correspondence 

Dr Michael White 

Malaria: Parasites and Hosts Unit 
Department of Parasites and Insect Vectors 
Institut Pasteur 
25-28 Rue du Docteur Roux 
Paris 75015 
France 
e-mail: michael.white@pasteur.fr 

 

Prof Ivo Mueller 

Division of Population Health and Immunity 
The Walter and Eliza Hall Institute of Medical Research 
1G Royal Parade 
Parkville 
Victoria 3052 
Australia 
e-mail: mueller@wehi.edu.au  

mailto:michael.white@pasteur.fr
mailto:mueller@wehi.edu.au


2 
 

Abstract 

Background 

Infection with SARS-CoV-2 induces an antibody response targeting multiple antigens that changes over time. This 

complexity presents challenges and opportunities for serological diagnostics. 

Methods 

A multiplex serological assay was developed to measure IgG and IgM antibody responses to seven SARS-CoV-2 spike or 

nucleoprotein antigens, two antigens for the nucleoproteins of the 229E and NL63 seasonal coronaviruses, and three 

non-coronavirus antigens. Antibodies were measured in serum samples from patients in French hospitals with RT-qPCR 

confirmed SARS-CoV-2 infection (n = 259), and negative control serum samples collected before the start of the SARS-

CoV-2 epidemic (n = 335). A random forests algorithm was trained with the multiplex data to classify individuals with 

previous SARS-CoV-2 infection. A mathematical model of antibody kinetics informed by prior information from other 

coronaviruses was used to estimate time-varying antibody responses and assess the potential sensitivity and 

classification performance of serological diagnostics during the first year following symptom onset. A statistical 

estimator is presented that can provide estimates of seroprevalence in very low transmission settings. 

Results 

IgG antibody responses to trimeric Spike protein identified individuals with previous RT-qPCR confirmed SARS-CoV-2 

infection with 91.6% sensitivity (95% confidence interval (CI); 87.5%, 94.5%) and 99.1% specificity (95% CI; 97.4%, 

99.7%). Using a serological signature of IgG and IgM to multiple antigens, it was possible to identify infected individuals 

with 98.8% sensitivity (95% CI; 96.5%, 99.6%) and 99.3% specificity (95% CI; 97.6%, 99.8%). Informed by prior data from 

other coronaviruses, we estimate that one year following infection a monoplex assay with optimal anti-Stri
 IgG cutoff has 

88.7% sensitivity (95% CI: 63.4%, 97.4%), and that a multiplex assay can increase sensitivity to 96.4% (95% CI: 80.9%, 

100.0%). When applied to population-level serological surveys, statistical analysis of multiplex data allows estimation of 

seroprevalence levels less than 1%, below the false positivity rate of many other assays.     

Conclusion 

Serological signatures based on antibody responses to multiple antigens can provide accurate and robust serological 

classification of individuals with previous SARS-CoV-2 infection. This provides potential solutions to two pressing 

challenges for SARS-CoV-2 serological surveillance: classifying individuals who were infected greater than six months 

ago, and measuring seroprevalence in serological surveys in very low transmission settings.  
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Introduction 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing coronavirus disease 2019 (COVID-19) emerged in 

Wuhan, China in December 2019. Since then, it has spread rapidly, with confirmed cases being recorded in nearly every 

country in the world. The presence of viral infection can be directly detected via reverse transcriptase quantitative PCR 

(RT-qPCR) on samples from nasopharyngeal or throat swabs. For individuals who display symptoms, SARS-CoV-2 virus is 

detectable in the first 2-3 weeks following symptom onset [1,2]. Viral shedding is shorter in mild cases with only upper 

respiratory tract symptoms (1-2 weeks) [3]. For asymptomatic individuals, the duration for which SARS-CoV-2 virus can 

be detected is uncertain. In most countries neither mild cases nor asymptomatic cases will be tested by RT-qPCR (unless 

they are direct contacts of known cases), and even among tested individuals many may be viremia negative at time of 

testing due to low viral load or improper sampling. While not suitable for diagnosis of clinical cases, serology is a 

promising tool for identifying individuals with previous infection by detecting antibodies generated in response to SARS-

CoV-2. However, the utility of serological testing depends on the kinetics of the anti-SARS-CoV-2 antibody response 

during and after infection.  

An individual is seropositive to a pathogen if they have detectable antibodies specific for that pathogen. From an 

immunological perspective, an individual can be defined as seropositive if they have either antibody secreting plasma 

cells and/or a matured memory B cell response to antigens on that pathogen. In practice, serological assays are used to 

measure antibody responses in blood samples. However, individuals who have never been infected with the target 

pathogen may have non-zero antibody responses due to cross-reactivity with other pathogens or background assay 

noise. To account for this, defining seropositivity is equivalent to determining whether the measured antibody responses 

is greater or lower than some defined cutoff value [4].   

�d�Z���� �u�}�•�š�� �(�µ�v�����u���v�š���o�� �u�����•�µ�Œ���� �}�(�� ���v�š�]���}���Ç�� �o���À���o�� �]�•�� �À�]���� ���}�v�����v�š�Œ���š�]�}�v�� �]�v�� ���� �•���u�‰�o���� �~���X�P�X�� �]�v�� �µ�v�]�š�•�� �}�(�� �…�P�l�u�>�•�U�� �Z�}�Á���À���Œ�� ����

measurement in terms of molecular mass per volume is usually impossible to obtain. Instead, a range of assays can 

provide measurements that are positively associated with the true antibody concentration, e.g. an optical density from 

an enzyme-linked immunosorbent assay (ELISA), or a median fluorescent intensity (MFI) from a Luminex® microsphere 

assay. In contrast to the continuous measurement of antibody response provided by laboratory-based research assays, 

most point-of-care serological tests provide a binary outcome: seronegative or seropositive. There are several 

commercially available tests for detecting SARS-CoV-2 antibody responses, which are being catalogued by FIND 

Diagnostics [5]. These tests are typically based on lateral flow assays mounted in plastic cartridges which detect 

antibodies in small volume blood samples. A key feature of many rapid tests is that they are dependent on the choice of 

seropositivity cutoff, and there may be substantial misclassification for antibody levels close to this cutoff.  

Antibody levels are not constant, and change over time. The early kinetics of the antibody response to SARS-CoV-2 have 

been well documented with a rapid rise in antibody levels occurring 5-15 days after symptom onset leading to 
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seroconversion (depending on the choice of cutoff) [1,6-9]. There are not yet data on the long-term kinetics of the SARS-

CoV-2 antibody response. Assuming the antibody response is similar to that of other pathogens [10-14], we expect to 

observe a bi-phasic pattern of decay, with rapid decay in the first 3-6 months after infection, followed by a slower rate of 

decay. Notably, this decay pattern may lead to seroreversion whereby a previously seropositive individual reverts to 

being seronegative. If a serological test with an inappropriately high choice of cutoff is used for SARS-CoV-2 serological 

surveys, there is a major risk that seroreversion may lead to previously infected individuals testing seronegative [15]. 

The antibody response generated following SARS-CoV-2 infection is diverse, consisting of multiple isotypes targeting 

several proteins on the virus including the spike protein (and its receptor binding domain, RBD) and the nucleoprotein 

[16]. This complexity of biomarkers provides both a challenge and an opportunity for diagnostics research. The challenge 

lies in selecting appropriate biomarkers and choosing between the increasing number of commercial assays, many of 

which have not been extensively validated and may produce conflicting results. The opportunity is that with multiple 

biomarkers, it is possible to generate a serological signature of infection that is robust to how antibody levels change 

over time [17-20], rather than relying on classification of seropositive individuals using a single cutoff antibody level.  

In this analysis, we apply mathematical models of antibody kinetics to serological data from the early stages of SARS-

CoV-2 infection and predict the potential consequences for serological diagnostics within the first year following 

infection.  
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Methods 

Samples 

We analysed 97 serum samples from 53 patients admitted to hospitals in Paris with SARS-CoV-2 infection confirmed by 

RT-qPCR [21,22], and 162 serum samples from healthcare workers in hospitals in Strasbourg [23] (Table 1). 68 plasma 

samples from the Thai Red Cross, 90 serum samples from Peruvian healthy donors, and 177 serum samples from French 

blood donors collected before December 2019 were used as negative controls. All samples underwent a viral 

inactivation protocol by heating at 56 °C for 30 minutes. The potential effect of the viral inactivation protocol on the 

measurement of antibody levels was assessed using serum positive for anti-malaria antibodies. IgG and IgM antibody 

levels were measured in matched samples before and after the inactivation protocol. The viral inactivation protocol did 

not affect measured IgG or IgM levels (data not shown).  

 

Table 1: Panels of samples. Positive control serum samples are from patients with RT-qPCR confirmed SARS-CoV-2 infection. 
Negative control samples are from panels of pre-epidemic cohorts with ethical approval for broad antibody testing. Age is presented 
as median and range. 

Panel RT-qPCR 
confirmed 

N: participants N: samples age (years) symptoms 
mild  severe 

Hôpital Bichat, Paris yes 4 34 39 (31, 80) 0 4 
Hôpital Cochin, Paris yes 49 63 56 (26, 79) 27 22 
Nouvel Hôpital Civil & 
Hôpital de Haute 
Pierre, Strasbourg  

yes 162 162 32 162 0 

Thai Red Cross pre-epidemic 
negative controls 

68 68 > 18    

Peru negative controls pre-epidemic 
negative controls 

90 90 > 18   

France blood donors 
(Établissement 
Français du Sang) 

pre-epidemic 
negative controls 

177 177 > 18   

 

 

Serological assays 

In a first step, four proteins derived from SARS-CoV-2 Spike were included in the assay. This includes SARS-CoV-2 

trimeric Spike ectodomain (Stri) and its receptor-binding domain (RBD) produced as recombinant proteins in mammalian 

cells in the Structural Virology Unit at Institut Pasteur, while S1 (cat# REC31806) and S2 (cat# REC31807) subunits were 

purchased from Native Antigen, Oxford, UK. Stri and RBD were designed based on the viral genome sequence of the 

SARS-CoV-2 strain France/IDF0372/2020, obtained from the GISAID database (accession number EPI_ISL_406596). The 

synthetic genes, codon-optimized for protein expression in mammalian cells, were ordered from GenScript and cloned in 
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pcDNA3.1(+) vector as follows: the RBD, residues 331-519, and the entire S ectodomain (residues 1-1208). The RBD 

construct included an exogenous signal peptide of a human kappa light chain (METDTLLLWVLLLWVPGSTG) to ensure 

efficient protein secretion into the media. The S ectodomain construct was engineered, as reported before to have the 

stabilizing double proline mutation (KV986-987 to PP986-987) and the foldon domain at the C-terminus that allows the S 

to trimerize (YIPEAPRDGQAYVRKDGEWVLLSTFL) resembling the native S state on the virion [24]. Both constructs 

contained a Strep (WSHPQFEK), an octa-histidine, and an Avi tag (GLNDIFEAQKIEWHE) at the C-terminus for affinity 

purification. Protein expression was done by transient transfection of mammalian HEK293 free style cells, as already 

reported. Proteins were then purified from supernatants on a Streptactin column (IBA Biosciences) followed by size 

exclusion purification on Superdex 200 column using standard chromatography protocols. 

In a second step, eight proteins were added to the assay. Recombinant SARS-CoV-2 nucleoprotein (NP) was expressed in 

E. coli in the Production and Purification of Recombinant Proteins Technological Platform at Institut Pasteur. Two SARS-

CoV-2 antigens were purchased from Native Antigen, Oxford, UK: RBD (cat# REC31831-20) and NP (cat# REC31812-100). 

Additional antigens for seasonal coronaviruses 229E NP (cat# REC31758-100) and NL63 NP (cat# REC31759-100), 

influenza A (cat# FLU-H1N1-HA-100), adenovirus type 40 (cat# NAT41552-100) and rubella (cat# REC31651-100) were 

purchased from Native Antigen. All proteins were coupled to magnetic beads as described elsewhere [25]. The mass of 

proteins coupled on beads were optimized to generate a log-linear standard curve with a pool of positive serum 

prepared from RT-qPCR-confirmed SARS-CoV-2 patients. 

In total, we optimized a 12-plex assay able to detect antibody responses against seven SARS-CoV-2 antigens (two 

nucleoproteins constructs, five spike), one nucleoprotein for each seasonal coronavirus NL63 and 229E, and three 

antigens from other viruses (Influenza A H1N1, adenovirus type 40, rubella) for which a large part of the population is 

expected to be seropositive due to vaccination or natural infection and hence serve as internal controls (Supplementary 

Table 1).  

The assay was performed in black, 96 well, non-binding microtiter plate (cat#655090; Greiner Bio-One, Germany). Briefly 

50 µL of protein-conjugated magnetic beads (500/region/µL) and 50 µL of diluted serum were mixed and incubated for 

30 min at room temperature on a plate shaker. All dilutions were made in phosphate buffered saline containing 1% 

bovine serum albumin and 0.05% (v/v) Tween-20 (denoted as PBT), and all samples were run in singlicate. Following 

incubation, the magnetic beads were separated using magnetic plate separator (Luminex®) for 60 seconds and washed 

�š�Z�Œ������ �š�]�u���•�� �Á�]�š�Z�� �í�ì�ì�� �…�>�� �}�(�� �W���d�X�� �d�Z���� �Á���•�Z������ �u���P�v���š�]���� ���������•�� �Á���Œ���� �]�v���µ�����š������ �(�}�Œ���í�ñ�� �u�]�v�µ�š���•�� �Á�]�š�Z�� �����š�����š�}�Œ�� �•�����}�v�����Œ�Ç��

antibody at room temperature on a plate shaker. The magnetic beads were separated and washed three times with 100 

�…�>���}�(���W���d�����v�����(�]�v���o�o�Ç���Œ���•�µ�•�‰���v���������]�v���í�ì�ì���…�>���}�(���W���d�X���&�}�Œ���/�P�D���u�����•�µ�Œ���u���v�š�•�U���•���Œ�µ�u���•���u�‰�o���•���Á���Œ�������]�o�µ�š�������í�l�î�ì�ì�U�����v����R-

Phycoerythrin (R-PE) -conjugated Donkey Anti-Human IgM (cat#709-116-073; JacksonImmunoResearch, UK) antibody 

was used as secondary antibody at 1/400 dilution. For IgG, serum samples were diluted 1/100, and R-Phycoerythrin (R-
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PE) -conjugated Donkey Anti-Human IgG (cat#709-116-098; JacksonImmunoResearch, UK) antibody was used as 

secondary antibody at 1/120 dilution. 

On each plate, two blanks (only beads, no serum) were included as well as a standard curve prepared from two-fold 

serial dilutions (1:50 to 1:25600) of a pool of positive controls. Plates were read using a Luminex® MAGPIX® system and 

the median fluorescence intensity (MFI) was used for analysis. A 5-parameter logistic curve was used to convert MFI to 

antibody dilution, relative to the standard curve performed on the same plate to account for inter-assay variations. The 

multiplex immunoassay was validated by checking that the MFI obtained were well correlated with those obtained in 

monoplex (only one conjugated bead type per well). For non-SARS-CoV-2 antigens, MFI data was used for the analysis. 

 

Statistical evaluation of diagnostic performance 

For measured antibody responses to a single antigen, diagnostic sensitivity is defined as the proportion of patients with 

RT-qPCR confirmed SARS-CoV-2 infection with measured antibody levels above a given seropositivity cutoff. For 

assessment of classification performance, samples taken from individuals less than 10 days after symptom onset were 

excluded. Diagnostic specificity is defined to be the proportion of negative controls (with no history of SARS-CoV-2 

infection) with measured antibody levels below a given seropositivity cutoff. Sensitivity and specificity can be traded off 

against each other by varying the seropositivity cutoff. This trade-off is formally evaluated using Receiver Operating 

Characteristic (ROC) analysis.  

Measured antibody responses to multiple antigens can be combined to identify individuals with previous SARS-CoV-2 

infection using classification algorithms. Here we use a random forests algorithm [17]. Uncertainty in sensitivity and 

specificity is quantified in three ways: (i) ���]�v�}�u�]���o�����}�v�(�]�����v�������]�v�š���Œ�À���o�•�������o���µ�o���š�������µ�•�]�v�P���t�]�o�•�}�v�[�•���u���š�Z�}���V���~�]�]�•���í�ì�ì�ì-fold 

repeat cross-validation with a training set comprising 2/3 of the data and a disjoint testing set comprising 1/3 of the 

data; (iii) cross-panel validation with algorithms trained and tested on disjoint panels of data (Supplementary Figure S1). 

 

Mathematical model of antibody kinetics 

SARS-CoV-2 antibody kinetics are described using a previously published mathematical model of the immunological 

processes underlying the generation and waning of antibody responses following infection or vaccination [10]. The 

existing model is adapted to account for the frequent data available in the first weeks of infection. 

�@�$
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L �C�2�æE�C�2�ßF �N�# 

where B denotes B lymphocytes, �w is the rate of differentiation of B lymphocytes into antibody secreting plasma cells, Ps 

denotes short-lived plasma cells, Pl denotes long-lived plasma cells, �Œ is the proportion of plasma cells that are short-

lived, g is the rate of generation of antibodies (IgG or IgM) from plasma cells, and r is the rate of decay of antibody 

molecules. Assuming B(0) = B0, Ps(0) = Pl(0) = 0 and A(0) = Abg, these equations can be solved analytically to give: 

�#�:�P�; L �#�Õ�ÚE�C�$�4�F
�:�é�?�ßE�:�sF�é�;�?�æF �Ü�;�A�?���ç

�:�?�æF �Ü�;�:�?�ßF �Ü�;�:�NF�Ü�;
E

�:�é�?�ßE�:�sF�é�;�?�æF �N�;�A�?�å�ç

�:�?�æF �N�;�:�?�ßF �N�;�:�ÜF�N�;
E

�é�A�?�Ö�Þ�ç

�:�?�æF �N�;�:�?�æF �Ü�;
E

�:�sF�é�;�A�?�Ö�×�ç

�:�?�ßF�N�;�:�?�ßF �Ü�;
�G 

Statistical inference was implemented within a mixed-effects framework allowing for characterisation of the kinetics 

within each individual while also describing the population-level patterns. On the population level, both the mean and 

variation in antibody kinetics are accounted for. The models were fitted in a Bayesian framework using Markov chain 

Monte Carlo methods with informative priors. Posterior parameter estimates are presented as medians with 95% 

credible intervals (CrIs). 

 

Prior data 

The recent emergence of SARS-CoV-2 means that long-term data on the duration of antibody responses do not yet exist. 

Therefore, predictions of antibody levels beyond the period for which data has been collected are heavily dependent on 

structural model assumptions and assumed prior information. The prior estimate of the half-life of IgG molecules is 21 

days. The prior estimate of the half-life of IgM molecules is 10 days. Prior estimates for the short-lived component of the 

antibody response (half-life = 3.5 days) are consistent with data from several sources [10-14]. The most notable 

uncertainty relates to estimates of the duration of the long-lived component of the SARS-CoV-2 antibody responses. We 

reviewed data from a number of sources on the long-term antibody kinetics following infection with other coronaviruses 

[26-31], summarized in Appendix Table A1. Based on the wide range of long-term antibody kinetics observed, we 

assumed a prior estimate of the half-life of the long-lived component of the IgG antibody response to be 400 days, and 

that the proportion of the short-lived antibody secreting cells is 90%. This corresponds to a scenario where the IgG 

antibody responses decreases by approximately 60% after one year. Additional sensitivity analyses were run assuming 

the half-life of the long-lived component of the IgG antibody response to be 200 days and 800 days.  

The model was first fitted to data from 23 patients with RT-qPCR confirmed SARS-CoV-2 infection in Hong Kong hospitals 

who were followed longitudinally for up to four weeks after initial onset of symptoms [1]. Posterior estimates from this 

model and data were used to provide prior estimates for the parameters describing the early stages of the antibody 

response (Appendix Table A2). 
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Serological surveillance 

A ROC curve obtained from a training data set consisting of both positive and negative samples is described by a 

sequence of sensitivities and specificities �<�O�A�*Þ �á�O�L�*Þ �=. N-fold cross-validation generates samples of sensitivity 

�<�O�A�Ü�5�á�å �á�O�A�Ü�Ç�= for each �O�L�*Þ  and samples of specificity �<�O�L�Ü�5�á�å �á�O�L�Ü�Ç�= for each �O�A�*Þ . Following a previously outlined 

approach [32,33], for each pair i of sensitivity and specificity, we obtain N estimates of the measured seroprevalence Min 

in a scenario with true seroprevalence T as follows: 

�/ �Ü�áL �6�O�A�Ü�áE�:�sF�6�;�:�sF�O�L�Ü�á�; 

The point estimates of sensitivity and specificity can be used to calculate an adjusted estimate of true seroprevalence:  

�6�*�áâ L
�/ �Ü�áE�O�A�*Þ F�s
�O�A�*Þ E�O�L�*Þ F�s

 

with �6�*�áâ L �r if �/ �Ü�áO�sF�O�A�*Þ . Both �/ �Ü and �6�*á are summarized as medians with 95% ranges. We calculate the expected 

relative error as: 

�s
�0

Í
�+�6�*�áâ F�6�+

�6

�Ç

�á�@�5

 

 

Ethics 

Serum samples were obtained through the CORSER study (Etude séro-épidémiologique du virus SARS-CoV-2 en France : 

���}�v�•�š�]�š�µ�š�]�}�v�� ���[�µ�v���� ���}�o�o�����š�]�}�v�� ���[� ���Z���v�š�]�o�o�}�v�•�� ���]�}�o�}�P�]�‹�µ���•�� �Z�µ�u���]�v�•�•�� ���]�Œ�����š������ ���Ç�� �/�v�•�š�]�š�µ�š�� �W���•�š���µ�Œ and approved by the 

Comité de Protection des Personnes Ile de France III, and the French COVID cohort (NCT04262921, sponsored by Inserm 

and approved by the Comité de Protection des Personnes Ile de France VI). Sample collection in Hôpital Cochin was 

approved by the Research Ethics Commission of Necker-Cochin Hospital. Use of the Peruvian negative controls was 

approved by the Institutional Ethics Committee from the Universidad Peruana Cayetano Heredia (SIDISI 100873). 
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Results 

Single biomarker classification 

IgG and IgM antibody responses to twelve antigens were measured as median fluorescence intensity (MFI). For the 

seven SARS-CoV-2 antigens, the measured MFI was converted to antibody dilutions (Figure 1). For all 14 SARS-CoV-2 

biomarkers (seven antigens, IgG and IgM for both), measured responses were significantly higher in samples with RT-

qPCR confirmed infection than in negative control samples (Figure 1A-B; P value < 1 x 10-7; 2 sided t test).  

The trade-off between sensitivity and specificity obtained by varying the cutoff for seropositivity was investigated using 

a ROC curve (Figure 1C-D). Depending on the characteristics of the desired diagnostic test, different targets for 

sensitivity and specificity can be considered. The results of three targets are summarized in Table 2. These are: (i) high 

sensitivity target enforcing sensitivity > 99%; (ii) balanced sensitivity and specificity where both are approximately equal; 

and (iii) high specificity target enforcing specificity >99%. Focusing on the high specificity target, anti-Stri IgG was the best 

performing biomarker with 99.1% specificity (95% CI: 97.4%, 99.7%) and 91.6% sensitivity (95% CI: 87.5%, 94.5%). Anti-

Stri IgG provided significantly better classification than all other biomarkers (Supplementary Table S2�V���D���E���u���Œ�[�•���š���•�š���W��

value < 10-8). There was significant correlation between antibody responses against all SARS-CoV-2 antigens, but no 

significant correlation between antibody responses to SARS-CoV-2 and the seasonal coronaviruses 229E and NL63 

(Figure 1E). 
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Figure 1: Anti-SARS-CoV-2 antibody responses. (A) Measured IgG antibody dilutions or medium fluorescence intensity (MFI) in 
serum samples with previously confirmed RT-qPCR infection from patients in Hôpital Bichat (n = 34), health care workers from 
Strasbourg (n = 162), and Hôpital Cochin (n = 63). Negative control samples from Thailand (n = 68), Peru (n = 90), and French donors 
(n = 177) were also tested. (B) Measured IgM antibody dilutions or MFI in serum or plasma samples. (C) Receiver Operating 
Characteristic (ROC) curve for IgG antibodies obtained by varying the cutoff for seropositivity. Colours correspond to those shown in 
part A. (D) ROC curve for IgM antibodies obtained by varying the cutoff for seropositivity. (E) Area under the ROC curve for individual 
biomarkers.  (F) Spearman correlation between measured antibody responses.  
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Table 2: Sensitivity and specificity targets for single biomarkers and multiplex combinations. 95% binomial confidence intervals 
�Á���Œ���������o���µ�o���š�������µ�•�]�v�P���t�]�o�•�}�v�[�•���u���š�Z�}���X Antigen combinations were selected to optimize sensitivity for the high specificity target, i.e. 
the highest sensitivity while enforcing specificity > 99%. 

biomarker high sensitivity target 
(sensitivity > 99%) 

balanced target 
(sensitivity ~ specificity) 

high specificity target 
(specificity > 99%) 

 sensitivity specificity sensitivity specificity sensitivity specificity 
IgG antibody dilution 
anti-Stri 99.2%  

(97.1%, 99.8%) 
94.0%  
(91.0%, 96.1%) 

97.1%  
(94.4%, 98.6%) 

97.0%  
(94.6%, 98.4%) 

91.6%  
(87.5%, 94.5%) 

99.1%  
(97.4%, 99.7%) 

anti-RBDv1 100.0%  
(98.5%, 
100.0%) 

0.0%  
(0.0%, 1.1%) 

89.2%  
(84.8%, 92.5%) 

97.5%  
(95.3%, 98.7%) 

88.0%  
(83.5%, 91.5%) 

99.1%  
(97.4%, 99.7%) 

anti-RBDv2 99.2%  
(97.1%, 99.8%) 

0%  
(0%, 1.1%) 

91.2%  
(87.1%, 94.1%) 

91.4%  
(87.9%, 93.9%) 

78.1%  
(72.6%, 82.8%) 

99.1%  
(97.4%, 99.7%) 

anti-S1 99.2%  
(97.1%, 99.8%) 

75.9%  
(71.0%, 80.2%) 

91.6%  
(87.5%, 94.5%) 

91.7%  
(88.2%, 94.2%) 

50.6%  
(44.5%, 56.7%) 

99.1%  
(97.4%, 99.7%) 

anti-S2 99.2%  
(97.1%, 99.8%) 

22.6%  
(18.5%, 27.4%) 

90.7%  
(86.6%, 93.7%) 

91.4%  
(87.9%, 93.9%) 

66.9%  
(60.9%, 72.5%) 

99.1%  
(97.4%, 99.7%) 

anti-NPv1 100.0%  
(98.5%, 
100.0%) 

0%  
(0%, 1.1%) 

85.7%  
(80.8%, 89.5%) 

85.8%  
(81.7%, 89.1%) 

73.7%  
(67.9%, 78.8%) 

99.1%  
(97.4%, 99.7%) 

anti-NPv2 100.0%  
(98.5%, 
100.0%) 

0%  
(0%, 1.1%) 

86.9%  
(82.1%, 90.5%) 

86.7%  
(82.7%, 89.9%) 

72.9%  
(67.1%, 78.0%) 

99.1%  
(97.4%, 99.7%) 

IgM antibody dilution 
anti-Stri 99.6%  

(97.8%, 99.9%) 
9.2%  
(6.6%, 12.8%)  

74.9%  
(69.2%, 79.9%) 

74.9%  
(70.0%, 79.2%) 

0%  
(0%, 1.5%) 

100%  
(98.9%, 100%) 

anti-RBDv1 99.2%  
(97.1%, 99.8%) 

24.0%  
(19.7%, 28.8%) 

87.3%  
(82.6%, 90.8%) 

87.1%  
(83.1%, 90.3%) 

64.5%  
(58.4%, 70.2%) 

99.3%  
(97.8%, 99.8%) 

anti-RBDv2 99.2%  
(97.1%, 99.8%) 

28.4%  
(23.9%, 33.5%) 

84.9%  
(79.9%, 88.8%) 

84.5%  
(80.2%, 88.0%) 

57.0%  
(50.8%, 62.9%) 

99.3%  
(97.8%, 99.8%) 

anti-S1 99.6%  
(97.8%, 99.9%) 

7.4%  
(5.0%, 10.7%) 

69.3%  
(63.4%, 74.7%) 

69.4%  
(64.2%, 74.1%) 

0%  
(0%, 1.5%) 

100%  
(98.9%, 100%) 

anti-S2 99.2%  
(97.8%, 99.8%) 

8.5%  
(6.0%, 12.0%) 

65.7%  
(59.7%, 71.3%) 

65.7%  
(60.5%, 70.6%) 

0%  
(0%, 1.5%) 

100%  
(98.9%, 100%) 

anti-NPv1 99.2%  
(97.1%, 99.8%) 

17.3%  
(13.7%, 21.8%) 

73.3%  
(67.5%, 78.4%) 

73.4%  
(68.5%, 77.9%) 

0%  
(0%, 1.5%) 

100%  
(98.9%, 100%) 

anti-NPv1 99.2%  
(97.1%, 99.8%) 

5.5%  
(3.6%, 8.5%) 

73.7%  
(67.9%, 78.8%) 

73.8%  
(68.8%, 78.2%) 

0%  
(0%, 1.5%) 

100%  
(98.9%, 100%) 

Multiplex combinations 
Stri IgG + RBDv2 IgG 99.2%  

(97.2%, 99.8%) 
95.8%  
(93.1%, 97.5%) 

97.6%  
(94.9%, 98.9%) 

97.6%  
(95.4%, 98.8%) 

95.6%  
(92.3%, 97.5%) 

99.1%  
(97.4%, 99.7%) 

Stri IgG + RBDv2 IgG + 
 NPv1 IgG 

99.2%  
(97.2%, 99.8%) 

96.6%  
(94.1%, 98.1%) 

98.0%  
(95.4%, 99.1%) 

98.1%  
(96.1%, 99.1%) 

98.0%  
(95.4%, 99.1%) 

99.1%  
(97.4%, 99.7%) 

Stri IgG + RBDv2 IgG +  
NPv1 IgG + S2 IgG 

99.2%  
(97.2%, 99.8%) 

96.0%  
(93.3%, 97.6%) 

98.8%  
(96.5%, 99.6%) 

98.8%  
(96.9%, 99.5%) 

98.4%  
(96.0%, 99.4%) 

99.1%  
(97.4%, 99.7%) 

Stri IgG + RBDv2 IgG + NPv1 
IgG + S2 IgG + RBDv1 IgM 

99.2%  
(97.2%, 99.8%) 

98.5%  
(96.6%, 99.4%) 

98.8%  
(96.5%, 99.6%) 

98.9%  
(97.1%, 99.6%) 

98.8%  
(96.5%, 99.6%) 

99.3%  
(97.6%, 99.8%) 

Stri IgG + RBDv2 IgG + NPv1 
IgG + S2 IgG + RBDv1 IgM + 
NPv1 IgM 

99.2%  
(97.2%, 99.8%) 

98.9%  
(97.1%, 99.6%) 

98.8%  
(96.5%, 99.6%) 

98.9%  
(97.1%, 99.6%) 

98.8%  
(96.5%, 99.6%) 

99.3%  
(97.6%, 99.8%) 
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Serological signatures and multiple biomarker classification 

With 24 biomarkers, there are 24*23/2 = 156 possible pairwise comparisons. Figure 2A provides an overview of six 

pairwise comparisons of antibody responses. The data are noisy, highly correlated and high dimensional (although only 

two dimensions are depicted here). We refer to the pattern of multiple antibody responses in multiple dimensions as 

the serological signature. For all plots of SARS-CoV-2 biomarkers there are two distinct clusters: antibody responses from 

negative control samples in blue cluster in the bottom left, and antibody responses from serum samples from individuals 

with RT-qPCR confirmed SARS-CoV-2 infection cluster in the centre and top right.  

The classification performance of multiplex combinations of antibody responses is shown with the ROC curves in Figure 

2B. Including data from additional biomarkers leads to significant improvements in classification performance (Table 2). 

For example, for the high specificity target, with a single biomarker (anti-Stri IgG) we can achieve 91.6% sensitivity (95% 

CI: 87.5%, 94.5%). Including anti-RBDv2 IgG increases sensitivity to 95.6% sensitivity (95% CI: 92.3%, 97.5%). 

Combinations of size five to six provide 98.8% sensitivity (95% CI: 96.5%, 99.6%) and 99.3% sensitivity (95% CI: 97.6%, 

99.8%). There are diminishing returns to increasing the number of additional antigens (Figure 2C).  

 

Figure 2: Serological signatures of SARS-CoV-2 infection. (A) Pairwise combinations of antibody responses. Each point denotes a 
measured antibody response from a sample from Hôpital Bichat (n = 34), Nouvel Hôpital Civil & Hôpital de Haute Pierre in 
Strasbourg (n = 162), and Hôpital Cochin (n = 63). Negative control samples are included from Thailand (n = 68), Peru (n = 90) and 
French blood donors (n =177). (B) ROC curves for multiple biomarker classifiers generated using a Random Forests algorithm. (C) For 
a high specificity target (>99%), sensitivity increases with additional biomarkers. Sensitivity was estimated using a Random Forests 
classifier. Points and whiskers denote the median and 95% confidence intervals from repeat cross-validation.  
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SARS-CoV-2 antibody kinetics 

A mathematical model of antibody kinetics was fit to the serological data. Figure 3A shows data from a patient from 

Hôpital Bichat with frequent longitudinal sampling. The data and model indicate that the antibody response is in a rising 

phase between 5 and 30 days after symptom onset. The seroconversion time depends on the seropositivity cutoff. For 

the cutoffs shown, seroconversion occurs for anti-Stri IgG, anti-RBDv1 IgG and anti-S2 IgG, but not for anti-RBDv2 IgG, anti-

S1 IgG, anti-NPv1 IgG and anti-NPv2 IgG.  

 

 

Figure 3: IgG antibody kinetics. (A) Measured IgG antibody dilutions, shown as points, from a patient in Hôpital Bichat followed 
longitudinally. Posterior median model predictions of IgG antibody dilution are shown as black lines, with 95% credible intervals in 
grey. The coloured dashed line represents the cutoff for IgG seropositivity for that antigen. IgM antibody dilutions are shown as 
asterisks. The black horizontal dashed lines represent the upper and lower limits of the assay. (B) Measured IgG antibody dilutions 
and model predictions for the full population. Measured IgG antibody dilutions are shown as geometric mean titre (GMT) with 95% 
ranges. (C) Model predicted proportion of individuals testing seropositive over time. 

 

For all 215 individuals with RT-qPCR SARS-CoV-2 infection, Figure 3B shows the model predicted IgG antibody response 

to SARS-CoV-2. For all antigens, we predict a bi-phasic pattern of waning with a first rapid phase between one and three 

months after symptom onset, followed by a slower rate of waning. The percentage reduction in antibody level after one 
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year was mostly determined by prior information and estimated to be 47% (95% CrI: 18%, 90%) for anti-Stri IgG 

antibodies, with comparable estimates for other antigens (Appendix Table A3).  

Sensitivity was assessed using the seropositivity cutoff based on the high specificity target in Table 2. For all antigens 

considered, we predict that there will be a reduction in sensitivity over time, although there is a large degree of 

uncertainty (Figure 3C). In particular, we predict that the sensitivity based on anti-Stri IgG antibody responses after one 

year will be 88.7% (95% CrI: 63.4%, 97.4%); and that the sensitivity of a four antigen multiplex classifier after six months 

will be 96.4% (95% CrI: 80.9%, 100%) (Figure 4). 

 

 

Figure 4: Model predicted sensitivity over time. Proportion of n = 215 individuals with qRT-PCR infection testing seropositive over 
time. A Random Forests algorithm was used for classification of multiple antigen multiplex data. The grey shaded region shows the 
95% uncertainty interval for the four antigen multiplex classifier. 
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Multiplex assays for seroprevalence surveys 

For serological diagnosis of individual samples, the target pursued thus far is to optimize sensitivity whilst enforcing high 

specificity (>99%). A serological assay that accurately classifies individual samples will also perform well at estimating 

seroprevalence in populations. However, an assay optimized for individual-level classification is not necessarily optimal 

for population-level surveillance where the target is to obtain accurate estimates of the true seroprevalence. Figure 5A 

presents ROC curves for a monoplex anti-Stri IgG assay and a multiplex assay using six biomarkers from Table 2 with 

quantification of uncertainty via repeat cross-validation. In an epidemiological scenario with true seroprevalence = 5%, 

the measured seroprevalence will depend on the assay sensitivity and false positive rate (= 1 �t specificity) (Figure 5B). 

For high false positive rate, the measured seroprevalence overestimates the true seroprevalence. Applying a statistical 

correction to account for imperfect sensitivity and specificity, we can obtain more accurate estimates of seroprevalence 

(Figure 5C). For both the monoplex and multiplex serological assays, the adjusted estimates are not accurate for high 

false positive rates. 

Figure 5B-C presents the scenario when seroprevalence is known to be 5%. In real applications, true seroprevalence is 

not known a priori. For a range of seroprevalence from 0.1% to 100%, Figure 5D presents �À���o�µ���•���}�(���š�Z�������•�•���Ç�[�• sensitivity 

and specificity that have been optimized to minimize the expected relative error. For a monoplex assay based on anti-Stri
 

IgG antibodies, if true seroprevalence <20% the relative error is minimized when we select specificity >99%. When true 

seroprevalence <2% the relative error is minimized when specificity = 100%. For a multiplex serological assay, if true 

seroprevalence <30%, the relative error is minimized when we implement an algorithm with specificity = 100%. Figure 

5E presents a comparison of the expected relative error for the monoplex and multiplex assays. The expected relative 

error depends on the possible values of sensitivity and specificity, as well as the uncertainty in these estimates. For true 

seroprevalence >2% the monoplex assay has lower error (a consequence of the lower levels of variation in the ROC 

curve). For true seroprevalence <2%, the multiplex assay has lower error, a consequence of the high levels of specificity. 
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Figure 5: Implementation of seroprevalence surveys. (A) Receiver Operating Characteristic (ROC) analysis with cross-validated 
uncertainty. Solid lines represent median ROC curves and shaded regions represent 95% uncertainty intervals for specificity. (B) In a 
scenario with true seroprevalence = 5%, the measured seroprevalence depends on the false positive rate (= 1 �t specificity). Results 
for the monoplex anti-Stri IgG assay are shown on the left, and results for the multiplex assay are shown on the right. (C) In a scenario 
with true seroprevalence = 5%, adjusted seroprevalence estimates are obtained by accounting for assay sensitivity and specificity. 
(D) Across a range of true seroprevalence, optimal values of sensitivity and specificity can be selected to minimize the expected 
relative error in seroprevalence surveys. (E) The expected relative error for optimal values of sensitivity and specificity. 
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Discussion 

Infection with SARS-CoV-2 induces antibodies of multiple isotypes (IgG, IgM, IgA) targeting multiple epitopes on spike 

proteins exposed on the virus surface, and nucleoprotein. Each of these biomarkers may exhibit distinct kinetics leading 

to variation in their potential diagnostic performance. There is also substantial between-individual variation in the 

antibody response generated following SARS-CoV-2 infection. By measuring multiple biomarkers in large numbers of 

individuals, it is possible to create a serological signature of previous infection [17-19]. Although necessarily more 

complex than a single measured antibody response, such an approach has the potential of providing more accurate 

classification and being more stable over time.  

IgG antibody levels to a single antigen (trimeric Spike) can classify samples from individuals previously infected with 

SARS-CoV-2 with 91.6% sensitivity (95% CI: 87.5%, 94.5%) and 99.1% specificity (95% CI: 97.4%, 99.7%). Measuring 

additional biomarkers with a multiplex assay can improve classification performance to 98.8% sensitivity (95% CI: 96.5%, 

99.6%) and 99.3% specificity (95% CI: 97.6%, 99.8%). A similar phenomenon is observed for serological diagnosis of HIV 

where combining multiple assays can lead to improved accuracy [34]. Multiplex assays provide some of the benefits of 

combining separate assays, but are subject to the risk that multiple biomarkers measured on the same assay are often 

correlated. An additional role for high accuracy multiplex assays is as a secondary assay after initial screening with point-

of-care rapid serological tests. 

The reported accuracy of serological tests depends on multiple factors, most notably the validation samples used. 

Specificity is typically determined by pre-epidemic negative control samples, with the inclusion of greater numbers of 

samples providing more robust characterization of specificity. Rather than taking large numbers of samples from a 

homogeneous population, we encourage the utilization of multiple negative control panels that are epidemiologically 

diverse with respect to age and location. Sensitivity is determined by positive control samples. It may be trivial to record 

high sensitivity when validating with samples from small numbers of individuals with severe symptoms [35]. We 

encourage the use of multiple panels of positive control panels that are epidemiologically diverse with respect to factors 

such as age, COVID-19 symptom severity, and time since symptoms. When comparing the performance of different 

assays, the ideal approach is to use common serum samples. In the majority of situations where common serum samples 

are not available, including epidemiological information on validation samples can facilitate more effective comparison 

between assays. 

The long-term kinetics of the antibody response to SARS-CoV-2 will not be definitively quantified until infected 

individuals are followed longitudinally for months and even years after RT-qPCR confirmed infection. As we wait for this 

data to be collected, mathematical models can provide important insights into how SARS-CoV-2 antibody levels may 

change over time. Modelling beyond the timeframe for which we have data has its limitations, however our approach 

benefits from robust quantification of uncertainty accounting for a wide range of future scenarios. Furthermore, this 

modelling approach provides falsifiable predictions which will allow models to be updated as our team and others 
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generate new data. For the purpose of evaluation of antibody kinetics, measured antibody responses from samples 

collected from individuals followed longitudinally after confirmed SARS-CoV-2 infection will be especially valuable.  

The simulations presented here predict that following SARS-CoV-2 infection, antibody responses will increase rapidly 1-2 

weeks after symptom onset, with antibody responses peaking within 2-4 weeks. After this peak, antibody responses are 

predicted to decline according to a bi-phasic pattern, with rapid decay in the first three to six months followed by a 

slower rate of decay. Model predictions of the rise and peak of antibody response are informed by, and are consistent 

with, many sources of data [10-14,36]. Model predictions of the decay of antibody responses are strongly determined by 

prior information on longitudinal follow-up of individuals infected with other coronaviruses [26-31]. Under the scenario 

that the decay of SARS-CoV-2 antibody responses is similar to that of SARS-CoV, we would expect substantial reductions 

in antibody levels within the first year after infection. For the seropositivity cutoffs highlighted here, this could cause 

approximately 50% - 90% of individuals to test seronegative after one year, depending on the exact choice of biomarker 

and seropositivity cut-off. 

This presents a potential problem for SARS-CoV-2 serological diagnostics. Most commercially available diagnostic tests 

compare antibody responses to a fixed seropositivity cutoff. Where these cutoffs have been validated, it is typically by 

comparison of serum from negative control samples collected pre-epidemic with serum from hospitalized patients in the 

first weeks of infection (i.e. when antibody responses are likely to be at their highest) [37,38]. If we fail to account for 

antibody kinetics, we risk incorrectly classifying individuals with old infections (e.g. >6 months) as seronegative. This is 

particularly important for point-of-care rapid serological tests with fixed cutoffs, limited dynamic range and visual 

evaluation. If inappropriate tests are used in seroprevalence surveys, there is a risk of substantial under-estimation of 

the proportion of previously infected individuals.  

An advantage of continuous multiplex data is that different algorithms can be applied to the same data for different 

epidemiological applications. Table 2 assesses classification performance against three targets. We selected multiplex 

combination of antigens to optimize classification of individual samples against a target of maximizing sensitivity given a 

minimum specificity of 99%. However, a test that is optimal for individual-level classification is not necessarily optimal 

for population-level use. A recommended target for serological assays for sero-surveillance surveys is to minimize the 

expected error in estimated seroprevalence. For scenarios where we expect low true seroprevalence (<10%) we show 

that assays with high specificity (>99%) are optimal (Figure 5). Notably this provides a potential solution to the challenge 

of implementing sero-surveillance studies in regions where seroprevalence is expected to be lower than commonly 

reported false positive rates [39]. This is possible because our assay allows 100% specificity to be achieved with an 

accompanying reduction in sensitivity that can be statistically accounted for. In low seroprevalence settings there are 

additional challenges in collecting sufficient numbers of samples to ensure statistically robust estimates [40].    

There are a large number of immunological assays capable of measuring the antibody response to SARS-CoV-2 including 

neutralization assays, ELISA, Luminex, Luciferase Immunoprecipitation System (LIPS), peptide microarrays and more 
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[40,41]. From the perspective of quantifying protective immunity and vaccine development, functional approaches such 

as neutralization assays are clearly preferable. However, from a surveillance and diagnostics perspective, assays should 

be assessed in terms of their performance at classifying individuals with previous RT-qPCR confirmed infection. If the 

target is to diagnose someone, it does not matter what a biomarker does, only that it can be reliably detected in 

previously infected individuals and not in uninfected individuals. 

Beyond diagnostics, assessment of antibody kinetics may contribute to better understanding of the immune responses 

generated by SARS-CoV-2 vaccines [42]. Statistical models can be used to identify immunological correlates of 

protection, at least according to conditions such as the Prentice criterion [43,44]. An estimated correlate of protection 

may take the form of a dose-response relationship, with higher antibody levels associated with greater vaccine efficacy. 

Under the assumption that a correlate of protection can be identified, models of antibody kinetics can be used to 

provide preliminary estimates of the duration of protection following vaccination or natural infection [13,45]. 

The analysis presented here is based on limited data, and the predictions may subsequently be contradicted as more 

data become available. However, the concepts outlined here of serological signatures of SARS-CoV-2 infection generated 

by multiplex assays, and mathematical models of antibody kinetics, allow us to plan in advance for some of the future 

challenges that we may face in SARS-CoV-2 serological surveillance. 
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Supplementary Table S1: List of antigens included in the multiplex serological assay.  

category short name recombinant antigen expression system 
supplier, catalog 
number 

SARS-CoV-2 Stri SARS-CoV-2 Trimeric Spike protein HEK293 Institut Pasteur, Paris 

SARS-CoV-2 RBDv1 SARS-CoV-2 Spike Glycoprotein (S1) RBD CHO 
Native Antigen, 
REC31831-100 

SARS-CoV-2 RBDv2 SARS-CoV-2 Spike Glycoprotein (S1) RBD HEK293 Institut Pasteur, Paris 

SARS-CoV-2 S1 SARS-CoV-2 Spike Glycoprotein (S1)  HEK293 
Native Antigen, 
REC31806-100 

SARS-CoV-2 S2 SARS-CoV-2 Spike Glycoprotein (S2)  HEK293 
Native Antigen, 
REC31807-100 

SARS-CoV-2 NPv1 SARS-CoV-2 Nucleoprotein E. coli Institut Pasteur, Paris 

SARS-CoV-2 NPv2 SARS-CoV-2 Nucleoprotein E. coli 
Native Antigen, 
REC31812-100 

seasonal 
coronavirus 

229E-NP Human Coronavirus 229E Nucleoprotein E. coli 
Native Antigen, 
REC31758-100 

seasonal 
coronavirus 

NL63-NP Human Coronavirus NL63 Nucleoprotein E. coli 
Native Antigen, 
REC31759-100 

internal 
controls 

FluA 
Influenza virus H1N1 haemagglutinin 
recombinant antigen 

HEK293 
Native Antigen, FLU-
H1N1-HA-100 

internal 
controls 

Ade40 Adenovirus type 40 Hexon (capside) HEK293 
Native Antigen, 
NAT41552-100 

internal 
controls 

Rub 
Rubella virus-like particles  
(spike glycoprotein E1, spike glycoprotein E2 
and Capsid protein) 

HEK293 
Native Antigen, 
REC31651-100 
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Supplementary Table S2: Comparison of classification performance between biomarkers for a high specificity target (>99%). Pairwise comparisons are made using 
�D���E���u���Œ�[�•��test. The above diagonal element shows the odds ratio with 95% confidence intervals. Odds ratio > 1 indicates that biomarker indicated by the row has 
better classification than the biomarker indicated by the column. The corresponding element below the diagonal presents the P value. 

  Stri  RBDv1 RBDv2 S1 S2 NPv1 NPv2 Stri  RBDv1 RBDv2 S1 S2 NPv1 NPv2 
  IgG IgG IgG IgG IgG IgG IgG IgM IgM IgM IgM IgM IgM IgM 

Stri  IgG  13.75  
(5.1, 52.3) 

5.3  
(2.7, 11.7) 

Inf  
(30.1, Inf) 

87  
(15.2, 3475) 

6.8  
(3.4, 15.5) 

9  
(4.1, 23) 

220  
(39.1, 8729) 

20.3 
(7.6, 76.1) 

25.5  
(9.7, 95.4) 

107  
(29.3, 889) 

Inf  
(64.0, Inf) 

100.5 
(27.5, 835.6) 

65  
(21.9, 317.9) 

RBDv1 IgG < 10-10  0.76  
(0.4, 1.3) 

5.77  
(3.2, 11.3) 

2.35  
(1.5, 3.9) 

1.04  
(0.6, 1.8) 

1.2  
(0.7, 2.1) 

43  
(16.5, 159.6) 

2.18  
(1.3, 3.8) 

3.35  
(2.0, 5.8) 

41.25  
(15.8, 153.2) 

Inf  
(50.2, Inf) 

25.67  
(11.5, 71.0) 

21.1  
(10.0, 53.5) 

RBDv2 IgG 3.4 x 10-8 0.36  15  
(6.1, 47.5) 

2.87  
(1.76,4.83) 

1.23  
(0.8, 1.9) 

1.33  
(0.9, 2.0) 

45  
(17.3, 166.9) 

2.06  
(1.3, 3.3) 

3.0  
(1.9, 4.9) 

29.17  
(13.1, 80.6) 

66 
(22.3, 322.8) 

32.2  
(13.5, 100.5) 

25.83  
(11.6, 71.5) 

S1 IgG < 10-10 < 10-10 < 10-10  0.4  
(0.22,0.7) 

0.25  
(0.14, 0.41) 

0.28  
(0.17, 0.45) 

14.25  
(6.99, 33.8) 

0.48  
(0.31, 0.73) 

0.75 
(0.5,1.12) 

8.62  
(4.8, 16.7) 

32.25  
(12.3, 120.2) 

9.6  
(5, 20.7) 

7.08  
(3.9, 13.8) 

S2 IgG < 10-10 2.2 x 10-4 5.7 x 10-6 9.0 x 10-4  0.47  
(0.29, 0.73) 

0.48  
(0.3, 0.77) 

20  
(9.5, 50.7) 

0.83  
(0.55, 1.26) 

1.27  
(0.84, 1.92) 

11.5  
(6.4, 22.8) 

26.33  
(11.8, 72.8) 

11.27  
(6.1, 23.2) 

8.57  
(4.9, 16.2) 

NPv1 IgG < 10-10 1.0  0.39 7.0 x 10-10 5.9 x 10-4  1.57  
(0.56, 4.78) 

56.67  
(19.1, 277.5) 

1.89  
(1.18, 3.11) 

2.92  
(1.81, 4.85) 

54.33  
(18.27, 266.2) 

187  
(33.2, 7425.1) 

30.4  
(12.8, 94.9) 

29  
(12.2, 90.7) 

NPv2 IgG < 10-10 0.59 0.21 1.0 x 10-8 1.6 x 10-3 
0.48 
 

 28.17  
(12.7, 77.8) 

1.7  
(1.06, 2.76) 

2.62  
(1.6, 4.3) 

32.2  
(13.5, 100.5) 

183  
(32.4, 7267) 

18.88  
(9.3, 44.5) 

16.11  
(8.3, 35.9) 

Stri  IgM < 10-10 < 10-10 < 10-10 < 10-10 < 10-10 < 10-10 < 10-10  0.01  
(0, 0.05) 

0.02  
(0, 0.06) 

0.53  
(0.2, 1.34) 

3.11  
(1.43, 7.49) 

0.44  
(0.23, 0.82) 

0.36  
(0.18, 0.66) 

RBDv1 IgM < 10-10 2.6 x 10-3 7.7 x 10-4 4.7 x 10-4 0.42 7.3 x 10-3 0.026 < 10-10  Inf  
(5.21, Inf) 

68.5  
(18.6, 571.3) 

162  
(28.7, 6437) 

41.67  
(13.9, 204.8) 

24  
(10,75.26) 

RBDv2 IgM < 10-10 4.3 x 10-7 1.3 x 10-7 0.17 0.28 2.2 x 10-6 1.7 x 10-5 < 10-10 9.5 x 10-7  39  
(13.0, 191.8) 

47.67  
(16.0, 233.9) 

26.25  
(9.95, 98.13) 

14.43  
(6.75, 36.8) 

S1 IgM < 10-10 < 10-10 < 10-10 < 10-10 < 10-10 < 10-10 < 10-10 0.21 < 10-10 < 10-10  7.5  
(2.6, 29.3) 

0.59  
(0.32, 1.08) 

0.47  
(0.25, 0.85) 

S2 IgM < 10-10 < 10-10 < 10-10 < 10-10 < 10-10 < 10-10 < 10-10 2.6 x 10-3 < 10-10 < 10-10 6.2 x 10 -6  0.13  
(0.05, 0.31) 

0.12  
(0.04, 0.27) 

NPv1 IgM < 10-10 < 10-10 < 10-10 < 10-10 < 10-10 < 10-10 < 10-10 7.8 x 10 -3 < 10-10 < 10-10 0.092 1.8 x 10 -8  0.12  
(0, 0.93) 

NPv2 IgM < 10-10 < 10-10 < 10-10 < 10-10 < 10-10 < 10-10 < 10-10 4.6 x 10 -4 < 10-10 < 10-10 0.01 3.0 x 10 -10 0.039 
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Supplementary Table S3: Model predicted reductions in antibody levels and sensitivity at 6 and 12 months after symptom onset. All 
results are shown for a high specificity target (>99%). 

 model predicted reduction in 
antibody levels 

cutoff  
antibody 
dilution 

model predicted sensitivity 

 6 months 12 months 6 months 12 months 
Single biomarkers 

Stri IgG 
23.3%  
(3.6%, 85.4%) 

47.1%  
(17.5%, 90.3%) 

0.000122 94.8%  
(71.4%, 99.2%) 

88.7%  
(63.4%, 97.4%) 

RBDv1 IgG 22.1%  
(1.9%, 94.8%) 

44.3%  
(13.9%, 96.0%) 

0.000024 89.7%  
(74.2%, 99.2%) 

86.9%  
(70.1%, 98.7%) 

RBDv2 IgG 23.2%  
(3.4%, 80.4%) 

44.6%  
(16.1%, 85.8%) 

0.000226 67.8%  
(46.6%, 80.7%) 

56.7%  
(37.9%, 73.2%) 

S1 IgG 20.5%  
(2.6%, 89.9%) 

44.0%  
(14.6%, 92.4%) 

0.000700 49.2%  
(31.7%, 67.6%) 

41.2%  
(25.5%, 59.8%) 

S2 IgG 18.3%  
(2.1%, 79.5%) 

41.5%  
(13.5%, 86.5%) 

0.000479 70.9%  
(51.0%, 87.7%) 

61.6%  
(39.9%, 81.0%) 

NPv1 IgG 27.4%  
(2.5%, 94.4%) 

49.4%  
(11.5%, 96.4%) 

0.000664 69.0%  
(53.6%, 78.4%) 

63.9%  
(47.7%, 73.2%) 

NPv2 IgG 25.5%  
(1.6%, 97.2%) 

47.5%  
(7.8%, 98.4%) 

0.000630 65.5%  
(49.0%, 77.8%) 

57.7%  
(43.8%, 74.3%) 

Multiplex combinations 
Stri IgG + RBDv2 IgG �t �t �t 97.9%  

(89.5%, 100.0%) 
95.4%  
(82.3%, 99.6%)  

Stri IgG + RBDv2 IgG + 
 NPv1 IgG 

�t �t �t 98.4%  
(91.2%, 100.0%) 

95.9%  
(83.9%, 99.6%) 

Stri IgG + RBDv2 IgG +  
NPv1 IgG + S2 IgG 

�t �t �t 98.9%  
(86.1%, 100.0%) 

96.4%  
(80.9%, 100.0%) 
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Supplementary Figure S1: Quantification of uncertainty for serological classification. Results are shown for a single antigen (Stri) IgG 
assay in red, and a six antigen multiplex classifier in black. (A) �h�v�����Œ�š���]�v�š�Ç�����•�š�]�u���š�������µ�•�]�v�P���t�]�o�•�}�v�[�•�����]�v�}�u�]���o���u���š�Z�}�������‰�‰�o�]�������š�}�������š����
from all samples. Uncertainty in specificity at fixed sensitivity, and variation in sensitivity at fixed specificity are shown separately. (B) 
Uncertainty estimated using 1000-fold cross-validation with training (2/3 of samples) and testing (1/3 of samples) data sets. 
Uncertainty in specificity at fixed sensitivity, and variation in sensitivity at fixed specificity are shown separately. (C) Cross-panel 
validation. The title of each plot denotes the panels that were used for testing, while the other panels were used for training. 
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Appendix: Mathematical modelling of the duration of the anti-SARS-CoV-2 
antibody response 

Overview 

There are limited available longitudinal data on SARS-CoV-2 antibody kinetics, and no data from long-term follow-up (as 

of June 2020). However, there are a number of published studies on the long-term antibody kinetics to other 

coronaviruses, most notably Severe Acute Respiratory Syndrome coronavirus (SARS-CoV). Here we review some of the 

available published data, and describe how this can be used to provide prior information for modelling SARS-CoV-2 

antibody kinetics.  

 

Prior longitudinal data on long-term antibody responses to coronaviruses 

Appendix Table A1 summarises some of the published data on the long-term antibody kinetics to a number of 

coronaviruses: SARS-CoV, human seasonal coronavirus 229E, and Middle East Respiratory Syndrome coronavirus (MERS-

CoV). From the extracted time series, we estimated two summary statistics characterizing the long-term antibody 

response: the half-life of the long-lived component of the antibody response, and the percentage reduction in antibody 

response after one year. The half-life of the long-lived component of the antibody response was estimated by fitting a 

linear regression model to measurements of (log) antibody response taken greater than six months after symptom 

onset. The percentage reduction in antibody response after one year was estimated based on the reduction from the 

peak measured antibody response to the estimated antibody level at one year. Although a wide range of assays from 

ELISA to micro-neutralisation were used in the reviewed studies, in this simple and approximate analysis we did not 

attempt to account for assay dependent effects, except to subtract background antibody levels where necessary. 

Based on the estimated summary statistics, we assume that the long-term IgG antibody kinetics can be characterized as 

having a half-life of dl = 400 days with a 60% reduction after one year. In terms of the parameters of the mathematical 

model of antibody kinetics, this corresponds to prior estimates of cl = log(2)/dl = 0.0017 and �Œ ~ 0.9. For sensitivity 

analyses, we also considered scenarios where dl = 200 days and dl = 800 days. 

For IgM antibody kinetics, we assumed dl = 100 days and �Œ ~ 0.9. For sensitivity analyses, we also considered scenarios 

where dl = 50 days and dl = 200 days. 
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Appendix Table A1: Prior data on the duration of antibody responses to coronaviruses. Data from longitudinal studies on 
measured antibody levels to SARS coronavirus, seasonal coronavirus 229E, and MERS coronavirus. For each study, the time series 
describing the antibody kinetics was extracted. The half-life of the long-lived component of the antibody response was estimated 
using measurements of antibody response measured after 6 months from symptom onset �t the subset of the data used for this 
calculation is indicated in bold below. The percentage reduction in antibodies after one year is estimated based on the reduction 
from the peak measured response to the estimate antibody level at year.    

study half-life (days) 1 year 
reduction 

SARS-CoV; Wu et al. Emerg Inf Dis. 2007; 13(10)   
time (days) 180 365 730 1095          
IgG 0.96 0.638 0.516 0.249        510  
SARS-CoV; Mo et al. Respirology. 2006; 11: 49-53   
time (days) 7 15 30 60 90 180 270 360 450 540 720   
IgG 0.01 1.86 2.36 2.83 2.81 2.73 2.38 1.91 1.42 1.00 0.80 181 60% 
IgM 0.01 1.13 1.80 1.30 0.69 0.06 0.01      100% 
Nab 0.01 1.99 2.74 2.51 2.26 2.06 1.83 1.56 1.24 0.96 0.78 277 69% 
SARS-CoV; Cao et al. NEJM. 2007; 357(11)   
time (days) 30 120 210 300 480 720 900 1080      
IgG 196 244 114 112 64 36 33 28    394 61% 
Nab 1034 1254 836 773 960 99 32 32    154 33% 
SARS-CoV; Liu et al. J Inf Dis. 2006. 193   
time (days) 30 120 210 300 480 720        
IgG 185 201 115 125 65 32      254 49% 
SARS-CoV; Tang et al. J Immunol. 2011; 186:7264-7268   
time (days) 24 120 210 300 480 720 900 1080 1600 2160    
IgG 305 252 128 170 66 31 36 33 6.9 6.0  400 57% 
seasonal coronavirus 229E; Callow et al. Epid. Inf. 1990; 105: 435-446   
time (days) 0 21 84 364          
IgG 2.45 3.18 2.62 2.51        191 91% 
IgA 2.61 3.04 2.80 2.66        150 87% 
Nab 1.43 9.84 5.46 2.19        116 91% 
MERS CoV; Choe et al. Emerg Inf Dis. 2017; 23(7)   
time (days) 15 90 200 300 400         
IgG (S1) 1.39 2.53 1.63 1.56 1.47       915 50% 
 

Case study of early-stage SARS-Cov-2 antibody kinetics: hospitalized patients in Hong Kong 

We performed a secondary analysis of data from patients admitted to Princess Margaret Hospital and Queen Mary 

Hospital in Hong Kong, following the primary analysis by To, Tsang et al [1]. 23 patients with RT-qPCR confirmed SARS-

CoV-2 infection were followed longitudinally for up to four weeks after initial onset of symptoms. Ten patients had 

severe COVID-19, all of whom required oxygen supplementation, and 13 patients had mild disease.  

The Hong Kong based team expressed and purified recombinant proteins for receptor-binding domain (RBD) and 

nucleoprotein (NP). Genes encoding the spike RBD (amino acid residues 306 to 543 of the spike protein) and full length 

NP of SARS-CoV-2 were codon-optimized, synthesized and cloned. IgG and IgM antibody responses were quantified via 
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the optical density (OD) from an enzyme immunoassay (EIA). Serial dilutions from 1:100 to 1:16,000 of a positive control 

serum were assayed for IgG responses. This allowed conversion of IgG antibody responses measured by EIA OD to 

dilutions. To determine the sero-positivity cutoff, the mean value of 93 anonymous archived serum specimens from 

2018 plus 3 standard deviations was used. The cutoff values were: anti-NP IgG = 0.523 OD; anti-RBD IgG = 0.108 OD; 

anti-NP IgM = 0.177 OD; and anti-RBD IgM = 0.085. After conversion of the EIA OD values to dilutions, the sero-positivity 

cutoffs for IgG antibody responses were anti-NP IgG = 0.00682; and anti-RBD IgG = 0.002665.  

 

Results 

Estimated model parameters are presented in Appendix Table A2. Appendix Figure A1 provides an overview of the fitted 

antibody kinetics to all participants. Detailed individual-level fits to the data, with quantification of uncertainty are 

shown in Appendix Figures A2-A5. Comparing the early kinetics of the IgG and IgM response, we estimate that the time 

to anti-NP IgG sero-conversion was 11.0 days (inter-quartile range (IQR): 8.1, 11.6), and the time to anti-NP IgM sero-

conversion was 11.9 days (IQR: 8.4, 15.8). The time to anti-RBD IgG sero-conversion was 8.6 days (IQR: 5.3, 10.4), and 

the time to anti-NP IgM sero-conversion was 11.6 days (IQR: 9.2, 28.6). Although time to sero-conversion is dependent 

on the selection of sero-positivity cutoff, this suggests that IgM responses are not induced before IgG responses, and 

that both are generated at approximately the same time.  
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Appendix Figure A1: SARS-CoV-2 antibody kinetics in Hong Kong patients. Anti-nucleoprotein (NP) and anti-receptor-binding 
domain (RBD) antibody responses in 22 patients with PCR confirmed SARS-CoV-2 infection admitted to hospitals in Hong Kong. 
Measured antibody levels in patients are depicted as points. Measured antibody levels in negative controls are depicted as crosses. 
Grey lines show posterior median model prediction. The uncertainty of the model predictions is presented via 95% credible intervals 
in Figures S2-5. The horizontal dashed line represents the cutoff for sero-positivity. 



33 
 

 

Appendix Figure A2: Model fit to short-term data on anti-NP IgG antibody responses. Measured antibody responses 
are shown as red points. Posterior median model predictions are shown as black lines, with 95% credible intervals in 
grey. The horizontal dashed line represents the cutoff for sero-positivity. Note that as there is no data on the long-term 
antibody response to SARS-CoV-2, three different sources of prior information were utilized. The half-life of the long-
lived component of the antibody responses was assumed to be 200 days (short prior), 400 days (medium prior), or 800 
days (long prior). Note that each of the three assumptions give near identical fits for the short-term kinetics displayed 
here. 
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Appendix Figure A3: Model fit to short-term data on anti-RBD IgG antibody responses. Measured antibody responses 
are shown as red points. Posterior median model predictions are shown as black lines, with 95% credible intervals in 
grey. The horizontal dashed line represents the cutoff for sero-positivity. Note that as there is no data on the long-term 
antibody response to SARS-CoV-2, three different sources of prior information were utilized. The half-life of the long-
lived component of the antibody responses was assumed to be 200 days (short prior), 400 days (medium prior), or 800 
days (long prior). Note that each of the three assumptions give near identical fits for the short-term kinetics displayed 
here. 
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Appendix Figure A4: Model fit to short-term data on anti-NP IgM antibody responses. Measured antibody responses 
are shown as red points. Posterior median model predictions are shown as black lines, with 95% credible intervals in 
grey. The horizontal dashed line represents the cutoff for sero-positivity. Note that as there is no data on the long-term 
antibody response to SARS-CoV-2, three different sources of prior information were utilized. The half-life of the long-
lived component of the antibody responses was assumed to be 50 days (short prior), 100 days (medium prior), or 200 
days (long prior). Note that each of the three assumptions give near identical fits for the short-term kinetics displayed 
here. 
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Appendix Figure A5: Model fit to short-term data on anti-RBD IgM antibody responses. Measured antibody responses 
are shown as red points. Posterior median model predictions are shown as black lines, with 95% credible intervals in 
grey. The horizontal dashed line represents the cutoff for sero-positivity. Note that as there is no data on the long-term 
antibody response to SARS-CoV-2, three different sources of prior information were utilized. The half-life of the long-
lived component of the antibody responses was assumed to be 50 days (short prior), 100 days (medium prior), or 200 
days (long prior). Note that each of the three assumptions give near identical fits for the short-term kinetics displayed 
here. 
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Appendix Table A2: Parameter estimates for antibody kinetics model fitted to Hong Kong data. Parameters of the 
antibody kinetics model are presented as posterior medians with 95% credible intervals.  The model is fitted in a mixed-
effects framework, so for every parameter we estimate the distribution within the entire population rather than a fixed 
value.  We present the mean and standard deviation as summary statistics for the estimated distributions 

description parameter prior NP IgG RBD IgG NP IgM RBD IgM 
mean of population-level distribution  
background IgG level Abg 0.001  

(1.1x10-6, 1.1) 
0.00011  
(2.6x10-5, 0.0003) 

0.0015  
(0.0013, 0.0017) 

�t �t 

background IgM level Abg 0.03  
(0.001, 1.0) 

�t �t 0.049  
(0.043, 0.054) 

0.036  
(0.032, 0.04) 

ASC boost in mild cases (IgG) �tmild 0.01  
(0.0001, 1.2) 

0.014  
(0.006, 0.051) 

0.0028 
(0.0015, 0.0053) 

�t �t 

ASC boost in mild cases (IgM) �tmild 0.11  
(0.01, 1.2) 

�t �t 0.085  
(0.048, 0.17) 

0.08  
(0.04, 0.16) 

ASC boost in severe cases 
(IgG) 

�tsev 0.01  
(0.0001, 1.2) 

0.028  
(0.01, 0.207) 

0.0056  
(0.0034, 0.0099) 

�t �t 

ASC boost in severe cases 
(IgM) 

�tsev 0.11  
(0.01, 1.2) 

�t �t 0.67  
(0.29, 2.8) 

0.14  
(0.07, 0.46) 

delay in generation of 
antibody response (days) 

�• 5.4  
(2.5, 15.1) 

9.6  
(7.7, 11.9) 

7.8  
(5.6, 11.7) 

7.9  
(6.4, 9.8) 

8.7  
(7.0, 10.7) 

half-life of memory cells 
(days) 

dm 2.1  
(1.5, 4.0) 

2.0  
(1.3, 7.8) 

1.8  
(1.3, 2.8) 

2.0  
(1.3, 5.7) 

2.2  
(1.5, 4.9) 

half-life of short-lived ASCs 
(days) 

ds 3.2  
(1.9, 9.2) 

2.5  
(1.8, 4.1) 

2.4  
(1.8, 3.7) 

2.4  
(1.7, 3.8) 

2.8  
(2.0, 4.7) 

half-life of long-lived ASCs 
(days) (IgG) 

dl 400  
(302, 567) 

408  
(227, 727) 

417  
(230, 771) 

�t �t 

half-life of long-lived ASCs 
(days) (IgM) 

dl 100  
(76, 142) 

�t �t 104 
(68, 163) 

103  
(66, 167) 

half-life of IgG molecules 
(days) 

da 21  
(18·7, 24·1) 

43·5  
(25·7, 243·6) 

21·3  
(18·4, 28·7) 

�t �t 

half-life of IgM molecules 
(days) 

da 10 
(9.1, 11.5) 

�t �t 10.8  
(9.3, 164.2) 

10.2  
(9.2, 13.2) 

proportion of short-lived 
ASCs  

�Œ 90%  
(65%, 95%) 

90%  
(79%, 94%) 

80%  
(57%, 94%) 

93%  
(65%, 97%) 

89%  
(62%, 98%) 

standard deviation of population-level distribution  
background IgG level Abg 0.0006  

(6x10-7, 0.8) 
5.7x10-5  
(1.0x10-5, 0.00013) 

0.0004  
(0.0003, 0.0005) 

�t �t 

background IgM level Abg 0.01  
(0.0003, 0.5) 

�t �t 0.01  
(0.007, 0.015) 

0.008  
(0.006, 0.011) 

ASC boost in mild cases (IgG) �tmild 0.006  
(5.4x10-5, 0.9) 

0.020  
(0.006, 0.23) 

0.0017  
(0.0007, 0.005) 

�t �t 

ASC boost in mild cases (IgM) �tmild 0.06  
(0.004, 1.1) 

�t �t 0.045  
(0.020, 0.17) 

0.06  
(0.03, 0.21) 

ASC boost in severe cases 
(IgG) 

�tsev 0.006  
(5.4x10-5, 0.9) 

0.048  
(0.01, 2.0) 

0.0030  
(0.0015, 0.008) 

�t �t 

ASC boost in severe cases 
(IgM) 

�tsev 0.06  
(0.004, 1.1) 

�t �t 0.55  
(0.19, 4.9) 

0.17  
(0.06, 1.4) 

delay in generation of 
antibody response (days) 

�• 3.5  
(1.2, 34.6) 

4.2  
(2.8, 6.9) 

6.5  
(3.8, 17.5) 

3.5  
(2.3, 5.9) 

3.8  
(2.6, 6.4) 

half-life of memory cells 
(days) 

dm 1.1  
(0.5, 7.2) 

1.8  
(0.6, 35.3) 

1.0  
(0.5, 3.5) 

1.8  
(0.6, 18.5) 

1.8  
(0.7, 11.87) 

half-life of short-lived ASCs 
(days) 

ds 2.3  
(0.9, 29.2) 

1.3  
(0.6, 3.5) 

1.2  
(0.6, 2.8) 

1.2  
(0.6, 3.1) 

1.6  
(0.7, 4.6) 

half-life of long-lived ASCs 
(days) (IgG) 

dl 109  
(56, 349) 

111  
(47, 384) 

114  
(47, 404) 

�t �t 

half-life of long-lived ASCs dl 22  �t �t 22  23  



38 
 

(days) (IgM) (10, 69) (11, 67) (11, 73) 
       
half-life of IgG molecules 
(days) 

da 3·2  
(1·8, 8.6) 

84·0  
(22, 2808) 

5·4  
(2·0, 27) 

�t �t 

half-life of IgM molecules 
(days) 

da 2.2  
(1.2, 6.2) 

�t �t 4.4  
(1.5, 2770) 

2.6  
(1.3, 12) 

proportion of short-lived 
ASCs  

�Œ 0.07  
(0.02, 0.40) 

0.06  
(0.02, 0.26) 

0.25  
(0.04, 0.45) 

0.08  
(0.02, 0.42) 

0.18  
(0.02, 0.44) 

observational variance 
standard deviation for ELISA 
measurements (IgG) 

�•obs 0·004 
(0·0002, 0·1) 

0·0026 
(0·0023, 0·0030) 

0·0011 
(0·0009, 0·0013) 

�t �t 

standard deviation for ELISA 
measurements (IgM) 

�•obs 0·04 
(0·002, 1) 

�t �t 0·031 
(0·025, 0.037) 

0·022 
(0·019, 0.025) 
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Appendix Table A3: Parameter estimates for antibody kinetics model fitted to France data. Parameters of the antibody kinetics model are presented as 
posterior medians with 95% credible intervals.  The model is fitted in a mixed-effects framework, so for every parameter we estimate the distribution within the 
entire population rather than a fixed value.  We present the mean and standard deviation as summary statistics for the estimated distributions 

description parameter prior Stri
 RBDv1 RBDv2 S1 S2 NPv1 NPv2 

mean of population-level distribution  
background IgG level Abg 0.001  

(1.1x10-6, 1.1) 
2.8x10-5  
(2.6x10-5, 3.0x10-5) 

2.1x10-5  
(2.0x10-5, 2.3x10-5) 

4.2x10-5  
(3.8x10-5, 4.7x10-5) 

5.2x10-5  
(4.7x10-5, 5.9x10-5) 

4.5x10-5  
(4.0x10-5, 5.0x10-5) 

5.4x10-5  
(4.5x10-5, 6.5x10-5) 

8.1x10-5  
(7.1x10-5, 
9.4x10-5) 

ASC boost  �t 0.01  
(0.0001, 1.2) 

0.00014  
(9.7x10-5, 0.0002) 

3.9x10-5  
(2.6x10-5, 6.4x10-5) 

8.2x10-5  
(5.5x10-5, 0.00012) 

0.00020  
(0.00012, 0.00032) 

0.00017  
(0.00012, 0.00026) 

0.0040  
(0.0013, 0.016) 

0.0049  
(0.0014, 0.023) 

delay in generation of 
antibody response (days) 

�• 5.4  
(2.5, 15.1) 

8.0  
(6.0, 9.8) 

9.8  
(7.6, 11.5) 

6.4  
(4.1, 8.5) 

9.3  
(6.7, 11.3) 

9.7  
(7.7, 11.4) 

8.4  
(5.8, 10.6) 

8.5  
(5.6, 10.8) 

half-life of memory cells 
(days) 

dm 2.1  
(1.5, 4.0) 

1.8  
(1.4, 2.3) 

2.2  
(1.6, 4.0) 

1.8  
(1.4, 2.3) 

2.0  
(1.5, 2.8) 

1.8  
(1.5, 2.4) 

2.4  
(1.6, 15.5) 

2.5  
(1.6, 28.7) 

half-life of short-lived 
ASCs (days) 

ds 3.2  
(1.9, 9.2) 

2.9  
(2.1, 4.2) 

3.0  
(2.2, 4.3) 

2.8  
(2.1, 4.0) 

3.0  
(2.2, 4.3) 

3.1  
(2.2, 4.5) 

3.0  
(2.2, 4.2) 

3.0  
(2.2, 4.3) 

half-life of long-lived 
ASCs (days)  

dl 400  
(302, 567) 

411  
(229, 752) 

416  
(233, 745) 

410  
(228, 752) 

413  
(228, 746) 

415  
(233, 769) 

416  
(226, 775) 

406  
(223, 739) 

half-life of IgG molecules 
(days) 

da 21  
(18·7, 24·1) 

21·3  
(18·9, 24·0) 

21·3  
(18·9, 23·9) 

21·3  
(18·8, 24·0) 

21·4  
(18·9, 24·1) 

21·4  
(19·0, 24·1) 

21·2  
(18·8, 23·9) 

21·2  
(18·8, 24·0) 

proportion of short-lived 
ASCs  

�Œ 90%  
(65%, 95%) 

72%  
(56%, 92%) 

85%  
(0%, 94%) 

75%  
(57%, 93%) 

78%  
(56%, 93%) 

70%  
(55%, 92%) 

80%  
(57%, 94%) 

81%  
(0%, 94%) 

standard deviation of population-level distribution  
background IgG level Abg 0.0006  

(6x10-7, 0.8) 
1.3x10-5  
(1.1x10-5, 1.6x10-5) 

8.7x10-6  
(7.5x10-6, 1.0x10-5) 

2.8x10-5  
(2.3x10-5, 3.5x10-5) 

3.2x10-5  
(2.6x10-5, 4.1x10-5) 

2.9x10-5  
(2.3x10-5, 3.7x10-5) 

4.2x10-5  
(3.0x10-5, 5.9x10-5) 

5.5x10-5  
(4.2x10-5, 
7.4x10-5) 

ASC boost  �t 0.006  
(5.4x10-5, 0.9) 

0.00014  
(8.8x10-5, 0.0002) 

5.6x10-5  
(2.8x10-5, 0.00012) 

8.5x10-5  
(4.8x10-5, 3.5x10-5) 

0.00034  
(0.00017, 0.00076) 

0.0002  
(0.0001, 0.0004) 

0.04  
(0.004, 0.53) 

0.073  
(0.0064, 1.13) 

delay in generation of 
antibody response (days) 

�• 3.5  
(1.2, 34.6) 

3.4  
(2.5, 4.5) 

3.3  
(2.5, 4.3) 

2.6  
(1.6, 3.9) 

3.2  
(2.4, 4.2) 

3.3  
(2.6, 4.3) 

2.7  
(1.9, 3.8) 

2.8  
(1.9, 3.9) 

half-life of memory cells 
(days) 

dm 1.1  
(0.5, 7.2) 

1.1  
(0.6, 2.0) 

2.2  
(0.9, 9.2) 

1.1  
(0.7, 2.2) 

1.5  
(0.8, 4.0) 

1.2  
(0.7, 2.4) 

2.9  
(0.9, 162) 

3.2  
(0.9, 533) 

half-life of short-lived 
ASCs (days) 

ds 2.3  
(0.9, 29.2) 

1.0  
(0.6, 2.0) 

1.1  
(0.6, 2.2) 

1.0  
(0.6, 2.2) 

1.1  
(0.6, 2.1) 

1.1  
(0.6, 2.2) 

1.1  
(0.6, 2.1) 

1.1  
(0.6, 2.1) 

half-life of long-lived 
ASCs (days)  

dl 109  
(56, 349) 

111  
(46, 384) 

113  
(48, 371) 

111  
(47, 396) 

112  
(47, 377) 

113  
(46, 392) 

113  
(46, 394) 

109  
(45, 359) 

half-life of IgG molecules 
(days) 

da 3·2  
(1·8, 8.6) 

3·2  
(1.8, 7) 

3·2  
(1·8, 7.2) 

3·2  
(1·8, 7.1) 

3·2  
(1.8, 7.1) 

3·2  
(1·8, 6.9) 

3·2  
(1·8, 7.0) 

3·2  
(1·8, 7.0) 

proportion of short-lived 
ASCs  

�Œ 0.07  
(0.02, 0.40) 

0.30  
(0.015, 0.45) 

0.01  
(0.0, 0.43) 

0.28  
(0.012, 0.45) 

0.19  
(0.0035, 0.44) 

0.32  
(0.02, 0.46) 

0.19  
(0.003, 0.45) 

0.06 
(0.0, 0.45) 

observational variance 
log scale standard 
deviation for Luminex 
measurements  

�•obs 0·71 
(0·18, 2.75) 

0·47 
(0·42, 0.53) 

0.53 
(0.47, 0.58) 

0.59 
(0·51, 0.66) 

0.67 
(0·60, 0.75) 

0.67 
(0·60, 0.75) 

1·11 
(0.98, 1.26) 

0.91 
(0.81, 1.02) 
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