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Abstract: Today, 3D imaging techniques are emerging, not only as a new tool in early drug
discovery but also for the development of potential therapeutics to treat disease. Particular efforts
are directed towards in vivo physiology to avoid perturbing the system under study. Here, we
assess non-invasive 3D lensless imaging and its impact on cell behavior and analysis. We test our
concept on various bio-applications and present here the first results. The microscopy platform
based on in-holography provides large fields of view images (several mm? compared to several
hundred pm?) with sub-micrometer spatial resolution. 3D image reconstructions are achieved
using back propagation functions post-processing.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Over the last decades, several major breakthroughs in the field of microscopy have been realized,
targeting better and better spatio-temporal performances of various microscopy modalities:
optical microscopy, fluorescence microscopy AFM, SEM, etc. Thanks to the large availability
of lower cost, megapixel detectors and the progress in computing speeds in the 2000s, digital
lensless imaging has emerged less than a decade ago. This technique has the advantage of being
free from imaging optics, avoiding the drawbacks of aberrations, which otherwise systematically
deteriorate the final image. Lensless microcopy has found wide applications in e.g. physics and
biology [1-8]. The image formation is ensured by numerical reconstructions based mainly on
Fourier optics. The experimental implementation is rather simple: a coherent beam illuminates
the sample and the diffraction pattern is recorded on a CCD or CMOS camera. However, cameras
are only sensitive to the intensity of the field (that is, its square modulus). The spatial phase is
lost, making it impossible to directly retrieve the object from this measurement alone. One of the
most common concept follows the first demonstration of Gabor’s in-line holography in 1948,
where a reference beam interferes with the diffracted beam and directly encodes the phase in the
diffraction pattern [9]. The simplicity and ease of use make this lensless technique a promising
method to investigate freely moving or static biological samples. Additionally, the revolutionary
advances in microfabrication technologies have resulted in remarkable miniaturization of the
imaging systems and have opened up a wide variety of innovative applications [10].

Thanks to its versatility as a non-invasive technique able to operate in a large field-of-view
(FOV) [11] and high depth-of-field (DOF), this approach triggered strong interest for in vivo
imaging applications. In most of the classical systems, there is a limitation of the FOV when
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increasing the desired resolution; in other words, observing fine details of an object in a large
field of view is extremely difficult. From the perspective of point-of-care (POC) applications,
this constraint makes investigating biological samples more difficult, as they often have to be
visualized in a large FOV, in e.g. 3D reconstruction of cell culture [12] or study of cell motility
[13]. On the contrary, an outstanding characteristic of in-line holography lies in the possibility to
reach rather large fields of view and close to wavelength spatial resolution.

Among all the advantages of in-line holography, the most important is the possibility to record
the depth information the object in a single acquisition in contrast for example to tomography
that requires hundreds of 2D projections. A 3D reconstruction of a volume object can thus be
achieved from a single 2D hologram, with the possibility of retrieving both amplitude and phase
information of the exit wave. This is therefore particularly advantageous for dynamical studies
with contrast ensured by the refractive index of the various biological material.

In this paper, a microscope based on in-line holography is presented. We focused our work on
in vivo high-resolution imaging in label free conditions. To illustrate the numerical 3D slicing,
several measurements were performed using polymeric beads. The functionality of the system
and a large variety of applications are then presented using several biological samples. A first
demonstration of is performed on U20S label free cells. Our primary tests were focused on the
analysis of cells components as cytoplasm, nucleus, nuclear membrane and nucleolus, without
the need of fluorescent labels. Additionally, in-vivo images of zebrafish embryos at various
stages of evolution are showed answering to a list of questions for future improvements of the
microscope. Finally, images and movies of live cyanobacteria were obtained. Real time analysis
of bacteria motility is made possible thanks to the very low radiation dose needed to record a
single hologram.

2. Materials and methods
2.1.  Working principle

The lensless microscopy setup is composed of: an illumination source (a diode laser with
adjustable power up to 60 mW, emitting at 1=405 nm, coupled to a polarization maintaining
optical fiber (P1-405SBPM-FC-2, Thorlabs)); a 1 um diameter pinhole which is located in front
of the fiber laser in order to increase the numerical aperture; and a CCD camera that collects
the hologram (see Fig. 1). The wavelength was chosen to improve the spatial resolution, which
is directly proportional to the illuminating wavelength. However, it could be adapted to match
specific sample properties.

The spherical wave supplied by the coherent source illuminates the sample. The use of a
pinhole allows creating a well-defined mode with improved spatial coherence that enhances the
quality of the holograms. Part of the light field is diffracted by the sample, and interferes after
propagation with the unscattered light, i.e. the holographic reference. The resulting hologram
or diffraction pattern is collected by the CCD camera (ARTCAM-810KAI-USB3 Series with a
5.5 um pixel size (Pccp) and 3296 x 2472 pixels). The source and sample positions are controlled
with motorized stages with nanometer scale step size. Downstream the holographic information
is digitalized and processed. No optics are used to form the image of the object. The setup is
compact (200 mm) and the working distance is about 40 mm. A “user friendly” interface has been
implemented to ease sample manipulation and data acquisition (see supplementary material).
The acquisition time (100 ms) and data processing (less than a second) are fast and the whole
process can be performed in real time. The software allows recovering the morphological details
of the sample in specific propagation planes.
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Fig. 1. a) Schematic representation of the principle. From left to right, holographic scheme
showing the illumination source (1), the pinhole (2), the sample holder (3), and the imaging
sensor (4). The holograms (5) are processed through fast algorithms (6) to retrieve the image
of the object (7). b) Resolution test with an optical target. The graph is a lineout along the
red line on the gray scale image, representing the holographic reconstruction of the sample.

2.2. Data acquisition parameters and processing

In our method, the magnification factor (M) is not given by an optical objective but by the

following relation [14]:
2+

M=— ey
21

z1 and 75, as illustrated in Fig. 1, represent the source-sample and the sample-detector distances,
respectively. In this demonstration, Z, the source-detector distance, is set at 40 mm and the
sample is positioned at a variable distance between the point source and the imaging detector.
However, the total working distance is constrained by the need of obtaining a certain degree
of spatial coherence. Indeed, with most in-line configurations where a partial coherent light is
supplied, a small (z) and a large (z;) are used to increase the coherence though propagation
[15-16]. In this case the magnification is close to 1. In our implementation, a highly coherent
source is used and we are not limited to large z;. However, there is an ideal compromise to
reach high resolution: increasing z increases M and the resolution, but for too high values
of the sample-to-detector distance, the system numerical aperture limits the maximal recorded
frequency and consequently limits the resolution [17]. The pinhole allows further increasing
both the numerical aperture and the coherence of the source, thus enhancing the quality of the
holograms. The power of the source is adjustable to optimize the dynamics of the data.

The digital hologram can be post-processed to increase the quality of the image reconstruction.
In in-line holography, the loss of the diffracted field spatial phase during the detection stage
symmetrizes the problem. Therefore, a virtual object, symmetrical to the real one, appears behind
the detector. It is then impossible to reconstruct distinctly one object (the other one being out of
focus and superimposed) [18—19]. This twin-image problem, inherent to this configuration, has
to be solved. Here, we implemented an iterative algorithm based on the work of Latychevskaia
and Fink [18]. Schematically, the hologram is first normalized by the reference signal, i.e. the
signal on the CCD without any sample. The normalized hologram is then numerically propagated
to a distance z, by a Fresnel propagator, where a real space constraint is applied. Here, it relies
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on the fact that the diffraction by the sample cannot create energy. Therefore, any pixel value
greater than one is set to one. After back propagation to -z,, the amplitude of the new hologram
is replaced by the modulus square of the experimental hologram. After a limited number of
iterations (typically between 10 and 20), the twin image contribution is effectively removed
from the reconstructed image. It is thus possible to retrieve the sample physical parameters
(transmittance and refractive index). Details on the algorithm can be found in Ref. [20]. The
algorithm is available upon request to the authors.

The algorithm allows recovering both the amplitude and phase of the exit wave. Therefore, it
is possible to create a 3D image by “slicing” the samples through numerical back propagation
at different depths. Moreover, this requires only one hologram recorded in a single acquisition.
To demonstrate the 3D imaging capability of the instrument, we carried out test experiments
using synthetic samples (polymeric microspheres) arranged in a controlled 3D scheme. The
sample is presented in Fig. 2(b)—(c). For this experiment, we used 3 stacked layers of optical
glass with individual thickness of approximatively 130 um. Between these layers we distributed
a solution of deionized water with a concentration of 0.06 uL of polymeric targets with diameter
d=10pum. The total working distance is Z=z; +z; =40 mm. The sample was positioned at
z; =3 mm. Using the digital propagation function, i.e. numerically varying z,, we can recover
several focal planes (see Fig. 2), effectively retrieving the microscope slides thicknesses. As
clearly visible in Fig. 2(b), the different microspheres in the color frames are in focus for different
values of z,, reflecting their vertical position in the slice multi-layer. Typically, in classical
microscopy the DOF is inversely proportional to the numerical aperture and magnification of the
objective [21]. The limitation is less stringent in in-line holography; however, the complexity of
the sample is an important parameter. Indeed, a thick and complex sample limits the DOF due
to the high scattering and absorption of the sample that causes losses of information. Several
methods have been developed to improve the optical quality of some biological targets that could
advantageously be applied to in-line holography [22-23].

Az (um)
220 r

180
Y(um)

~ —
= 325

FOV(umXum)

450 X(um)

a b c

Fig. 2. Reconstructed amplitude of the polymeric beads using the slicing function, using
a single hologram acquisition; a) The hologram in full FOV, b) the reconstruction in the
3 sample planes and c¢) zoom for each plane, corresponding to a microsphere retrieved
“in-focus”. The total sample thickness is of 250 um.

The achievable lateral resolution in in-line holography has been subject to many studies. A
detailed discussion can be found, for instance, in Ref. [24]. The theoretical lateral resolution is
defined by 6;,; = 1/2NA where NA is the numerical aperture of the beam, and A the wavelength.
In in-line holography, NA is defined as NA = D/Z with D the beam size at the detector plane.

Here, we have used instead the Rayleigh criterion, which defines the experimental spatial
resolution R as the shortest distance required to distinguish two point sources [25]. It can be
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expressed as
R = n109-90% dpixel ()

with n109,-909 the number of pixels that constitute the 10% - to - 90% rising (or falling) edge, in
intensity, and 4,y the image pixel size. We have used an optical target to define the experimental
resolution and obtained an experimental lateral resolution of Rexp = 1.4 um (see inset Fig. 1(b)).
In the inset of Fig. 1(b) the total FOV is 300 um in diameter and corresponds to a magnification
factor M = 60.

2.3. Sample preparation
2.3.1. Cell culture

U20S cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM, ThermoFisher,
31966021), supplemented with 10% fetal bovine serum (FBS) (Sigma, F7524) and 5% peni-
cillin/streptomycin (Gibco, 15140122) at 37°C and 5% CO2. For microscopy, cells were grown
on 12 mm round coverslips N°1,5H (Marienfeld, 900532), fixed in 2% formaldehyde (Thermo
Scientific, 28908) for 20 min at 37°C and rinsed with PBS before mounting in DAKO Fluorescence
mounting medium (S3023).

2.3.2. Zebrafish embryos

Wildtype zebrafish (Danio rerio) of the AB strain were maintained in accordance with institutional
guidelines. Embryos were obtained from natural spawning and staged according to Kimmel
et al [26]. Imaging: At given stages (6, 24 or 48 hours post fertilization (hpf)), embryos were
collected and dechorionated for in-vivo imaging. Before imaging, they were anesthetized with
0.2 mg/ml tricaine (MS-222, Sigma) then placed in the well of a glass-bottom microfluidic chip.

2.3.3. Cyanobacteria: strains and culture conditions

The freshwater cyanobacterium Synechocystis sp. PCC 6803 wild type were grown photo-
autotrophically in a modified BG11 medium (Herdman et al., 1973), containing twice amount
of sodium nitrate. Cells were kept in a rotary shaker (120 rpm) at 30°C and illuminated by
fluorescent white lamps giving a total intensity of about 50 to 60 mmol photons m~2 s~! under
a CO, atmosphere. The cells were maintained in the logarithmic phase of growth and were
collected at an optical density at 800 nm of 0.6 to 0.8 [27].

3. Results and discussion
3.1. 3D reconstruction of U20S cell culture

Using our lensless microscope, we collected holograms of U20S cells at various distances
between source and image sensor and various magnification factors, and processed them as
described above. The reconstruction steps are presented in Fig. 3: from hologram to standard
reconstruction and twin image corrected reconstruction. All images were acquired in a single
100 ms acquisition time. The reconstruction time could vary from few seconds to several minutes
depending of the number of successive planes required and the size of the selected hologram area.

In Fig. 3(b) the full FOV (80mm?) of the mounted sample is presented. Two regions of interest
were selected for this study (Fig. 3(a, c)). The first region (Fig. 3(a, d, g)) presents an area
with a single cell. In this reconstruction the magnification factor is about M = 36. Figure 3(c,
f, i, h) report a larger FOV containing several cells and a factor M =40. In both region of
analysis, we distinguish several areas of the cell, e.g. (Fig. 3(g)): cytoplasm (A), nuclear
envelope (C), and the nucleolus (B). The size of the reconstructed cells, as well as their nuclear
dimensions, are consistent with the sizes of freely growing U20S cells reported in the literature
[28]. Additionally, the images are well contrasted and contain both the amplitude and the phase
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Single cell FOV Large FOV Few cell FOV

RECONSTRUCTION HOLOGRAMES

TWIN IMAGE
CORRECTION

Fig. 3. a), b), ¢) Holograms, d), e), f) Reconstructed amplitude image of cell culture with
acquisition software and no twin image correction g), h), i) Reconstructed amplitude image
using post-processing data with twin image correction; h) is a zoom into the blue square
represented in i). The capital letters corresponds to cytoplasm (A), nuclear envelope (B),
and the nucleolus (C).

of the exit wave, which open the possibility of numerically implementing any imaging technique.
We have to mention that the magnification factor is changed both through numerical and physical
manipulation (changing the position of the sample by changing the distance z;).

In this scheme, the resolving power Reyp increases with the magnification factor M. For
example, Fig. 3-e shows a large FOV with M = 2 and Rexp, =24 ym. Our device allows to easily
zoom in a given area, as reported in Fig. 3-d, simply by tuning the vertical sample position. As an
illustration, Fig. 3(e) represents a zoom into the red square (Fig. 3(b)) with a magnification factor
M = 36 and a resolving power Rexp = 0.8 um. The calculation of the effective spatial resolution is
illustrated in Fig. 4, applying the Rayleigh criterion. Several points were chosen, and the final
value was estimated as an average of the measured values. We obtain from the nuclear envelope
aresolution of 0.6 um with a pixel size of Apjxe; = 0.15um.

Using the unique 3D imaging capability of our microscope, we can give an estimate of the
thickness of the sample (Fig. 5); to simplify, we start at z,=0 as arbitrary starting position for
the fine numerical scanning over several longitudinal plane. We clearly observe that the nucleus
shape evolves over an 8 um propagation range, as seen Fig. 5 where the nuclear size varies from
8 to 11 um. Using a 3D slicing package from the Image J software suite, we have compiled
the displayed slices to achieve a 3D representation of the sample, which is available in the
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Fig. 4. Estimation of the resolution on the nuclear envelope: a) the sample and the region
chosen for calculation taken from Fig. 3(g). The capital letters corresponds to cytoplasm
(A), nuclear envelope (B), and the nucleolus (C); b) profile plots of the region marked in a.

supplementary material (movie). The 3D rendering is satisfying but we notice that the depth
resolution (theoretically of 700 nm) limits the quality of the Z perception.

Az=0 Az=1 Az=2

10pm

Fig. 5. Slicing of the reconstructed amplitude of the cell displayed in Fig. 4(a). The slices
are recovered at different focal points Z; (um) ranging from 0 to 8 um (see Visualization 1).

3.2. In-vivo analysis of cyanobacteria motility (synechocystis PCC 6803)

The low dose of light, spread over the large FOV, allows the system to be compatible with in vivo
analysis. In this section, we focus our lensless microscope on cyanobacteria cells (Synechocystis),
a high-aimed type of cells. Studying this kind of cell is challenging due to their fast motility
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and strong interaction with light. The accessibility of a large FOV allowed us to analyze the
cells behavior and their interaction with a probe light [29]. This micro-organism, according
to several studies, use micro-optics to sense light direction. To study this dynamics, a second
diode (1 =637 nm) was inserted in the system. The short acquisition time needed to record for a
complete hologram allows generating a fast stroboscopic sequence compiled in a live movies.
This allow studying the cells motion in real time.

Figure 6 presents amplitude and phase reconstructions of living cyanobacteria. Within each
cell, the bright point (visible in both amplitude and phase maps) is associated to a self-focusing
effect of the light propagating through the cell. The cyanobacteria used in our experiment are
spherically shaped. As a result, similarly to the human eye, they can focus light to the rear side
of the cell which appears the brightest. The motility is ensured by pili that are photo-activated
only in the regions where light is concentrated [30]. The ability to move help cyanobacteria to
orientate and move favorably to light and environment.

=40s t=50s =60s t=70s

Fig. 6. Reconstructed hologram from cyanobacteria, in a) amplitude and b) phase. Bottom
line: screenshots at different times that show the movement of the cells in the fluid in the
direction of the source of light (the red star). In a and b, the scale bar 5 um (see Visualization
2).

From Fig. 6, we can calculate the motility of a single cell. We found a motility ranging
between 0.03 and 0.07 pm/s, in good agreement with previous studies [31]. In our experiments,
we observed that the majority of the cells (70%) moved towards the light (for example see the
yellow trajectory in Fig. 6). The rest (30%) displayed a stationary behavior followed by a circular
rotation (red arrow from Fig. 6). Dead cells were not considered and the motility estimation was
made for a total of 40 cells that are present in the screen captures in Fig. 6. The acquisition time
for individual frames was 100 ms.

3.3. Thick sample and perspectives

Imaging biological samples depends on the index of refraction (n). This can be an issue for
thick samples. In this last study, we examined the capability of our system to capture images
of live zebrafish embryos at various stages of their development (Fig. 7(a—g)). The hologram
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acquisitions were performed by replacing the pinhole by a 0.60 NA lens to create a spherical
wave in order to increase the signal. The image reconstructions were performed similarly to the
procedures presented in the sections above. A zebrafish embryo is a three-dimensional object,
thus reconstructions at different depths using our microscope allow recovering z-slices of the
sample, in order to focus on different part components or to follow the 3D structure of one (see
Fig. 7). As an illustration, the morphology of a blood vessel superimposed with bone structure
(Fig. 7(g, f)) within the tail fin (Fig. 7(a, ¢, d)) and the shape of the caudal fin are presented. In
Fig. 7-(d) we choose to define a relative position Z = 0 um where the red arrow indicates a bone
structure line; for Fig. 7—(e) the new distance from the relative position is Z; =250 um and the
arrow indicates the caudal fin; in g at Z; = 500 um two main blood vessels are indicated by the
red line vein and artery while for f at same distance Z, = 500 pm the red lines are following the
direction of intersegmental blood vessels.

Fig. 7. a) 6 hpf full zebrafish embryo, b) Detail of a 24 hpf zebrafish embryo, c¢) Detail of a
48 hpf dechorionated embryo, H) Reconstructed amplitude image of a dechorionated 48
hpf zebrafish embryo and corresponding zooms of different details: d) Relative position
Z =0 pum, the red arrow is a bone structure line, ) Z; =250 um the arrow indicates the
caudal fin; g) Z, =500 the red lines are following the direction of intersegmental blood
vessels, while in f) at same distance Zy = 500 um the red line points the vein and artery. The
given values of Z; correspond to the relative backpropagation distance, i.e. to the relative
distance between the transverse slices.

However, complex refractive index variations within the sample scatter the photons and distort
the optical wavefront, resulting in an increased background noise and a reduced quality of the
images. Nevertheless, several approaches have been proposed for cleaning that could achieve
better results for zebrafish analysis [32]. Another solution would be to use digital holography
in an off-axis configuration, in which the reference wave does not propagate inside the sample
medium [33].
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4. Conclusion

Lensless imaging based on in-line holography is an appealing solution for biomedical investiga-
tions due to its portability and in-vivo capability. We imaged and analyzed biological samples
in different working conditions, pointing out the ease of use of our platform for real time in
vivo studies. This non-invasive tool provides a wide range of applications from single cell to
population of cells and tissue imaging. Another remarkable advantage is the low level of radiation
that is needed, as the illumination is spread over the full FOV and the laser power is small. In the
first configuration we presented, the total power received by the sample is 0.25nW for a distance
fiber-pinhole of 2 mm.

The instrument is compact, cost-effective and allows sub-micrometer spatial resolution
associated to a wide FOV. A major advantage of in-line holography is that it is label free.
Moreover, after eliminating the twin image, it provides the exit field complete information, i.e.
amplitude and phase. Consequently, it is possible to observe 3D samples with phase contrast.
The fast acquisition time (100 ms) allows to study 3D dynamical properties of cells. As an
illustration, we reported the monitoring of the motility of cyanobacteria excited by light. Indeed,
for live analysis, back propagation functionalities have been embedded in our software to recover
through slicing the 3D shape of cells or tissues. We could observe very rapidly small features,
thanks to the high speed of the process. Our in-line configuration allows for the observation of
larger features (FOV between 15 mm and 400 um), at a variable resolution (24 um to 0.8 pm).
Additionally, it differs from common on chip digital in-line holography (DILH) setups by the
large sample-to-CCD distance [34], which allows implementing supplementary tools for specific
applications, illustrated here by the addition of a second light source to study the photokinesis
response of cyanobacteria. Additional optical elements, such as filters or polarizers, could also
be inserted before the detector to clean the hologram from parasitic contributions. DILH in
collimated beam configuration, which presents similar flexibility, imposes however a fixed FOV
and magnification [35]. Our setup, on the other hand, allows modifying easily the magnification
factor of the microscope, increasing accordingly the spatial resolution. Compared with an
off-axis digital holography microscopy, in-line holography is very stable against vibration of the
optical system, sharing the advantages of portability allowing this system to be brought out of the
laboratory without requiring any isolation system. A forthcoming and more sophisticated setup
aims at integrating single cell manipulation.
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