L. Gomez-valero, C. Rusniok, D. Carson, S. Mondino, and A. E. Pérez-cobas, More than 18,000 effectors in the Legionella genus genome provide multiple, independent combinations for replication in human cells, PNAS, vol.116, issue.6, pp.2265-73, 2019.
URL : https://hal.archives-ouvertes.fr/pasteur-02563435

N. P. Cianciotto, Type II secretion: a protein secretion system for all seasons, Trends Microbiol, vol.13, issue.12, pp.581-88, 2005.

H. K. Truchan, H. D. Christman, R. C. White, N. S. Rutledge, and N. P. Cianciotto, Type II secretion substrates of Legionella pneumophila translocate out of the pathogen-occupied vacuole via a semipermeable membrane, mBio, vol.8, issue.3, p.4797, 2017.

N. P. Cianciotto, Many substrates and functions of type II secretion: lessons learned from Legionella pneumophila, Future Microbiol, vol.4, issue.7, pp.797-805, 2009.

N. P. Cianciotto, Type II secretion and Legionella virulence, Molecular Mechanisms in Legionella Pathogenesis, pp.81-102, 2013.

S. Debroy, J. Dao, M. Söderberg, O. Rossier, and N. P. Cianciotto, Legionella pneumophila type II secretome reveals unique exoproteins and a chitinase that promotes bacterial persistence in the lung, PNAS, vol.103, issue.50, pp.19146-51, 2006.

K. H. Berger and R. R. Isberg, Two distinct defects in intracellular growth complemented by a single genetic locus in Legionella pneumophila, Mol. Microbiol, vol.7, issue.1, pp.7-19, 1993.

A. Marra, S. J. Blander, M. A. Horwitz, and H. A. Shuman, Identification of a Legionella pneumophila locus required for intracellular multiplication in human macrophages, PNAS, vol.89, issue.20, pp.9607-9618, 1992.

K. C. Jeong, D. Ghosal, Y. Chang, G. J. Jensen, and J. P. Vogel, Polar delivery of Legionella type IV secretion system substrates is essential for virulence, PNAS, vol.114, issue.30, pp.8077-82, 2017.

X. Charpentier, J. E. Gabay, M. Reyes, J. W. Zhu, A. Weiss et al., Chemical genetics reveals bacterial and host cell functions critical for type IV effector translocation by Legionella pneumophila, PLOS Pathog, vol.5, issue.7, p.1000501, 2009.

H. Hilbi, G. Segal, and H. A. Shuman, Icm/Dot-dependent upregulation of phagocytosis by Legionella pneumophila, Mol. Microbiol, vol.42, issue.3, pp.603-620, 2001.

M. Watarai, I. Derre, J. Kirby, J. D. Growney, W. F. Dietrich et al., Legionella pneumophila is internalized by a macropinocytotic uptake pathway controlled by the Dot/Icm system and the mouse Lgn1 locus, J. Exp. Med, vol.194, issue.8, pp.1081-96, 2001.

S. Weber, M. Wagner, and H. Hilbi, Live-cell imaging of phosphoinositide dynamics and 28 membrane architecture during Legionella infection, mBio, vol.5, issue.1, pp.839-852, 2014.

F. Fuche, A. Vianney, C. Andrea, P. Doublet, and C. Gilbert, Functional type 1 secretion system involved in Legionella pneumophila virulence, J. Bacteriol, vol.197, issue.3, pp.563-71, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01920845

M. A. Horwitz, The Legionnaires' disease bacterium (Legionella pneumophila) inhibits phagosome-lysosome fusion in human monocytes, J. Exp. Med, vol.158, issue.6, pp.2108-2134, 1983.

L. Xu, X. Shen, A. Bryan, S. Banga, M. S. Swanson et al., Inhibition of host vacuolar H + -ATPase activity by a Legionella pneumophila effector, PLOS Pathog, vol.6, issue.3, p.1000822, 2010.

M. S. Prevost, N. Pinotsis, M. Dumoux, R. D. Hayward, and G. Waksman, The Legionella effector WipB is a translocated Ser/Thr phosphatase that targets the host lysosomal nutrient sensing machinery, Sci. Rep, vol.7, issue.1, p.9450, 2017.

S. Urwyler, Y. Nyfeler, C. Ragaz, H. Lee, and L. N. Mueller, Proteome analysis of Legionella vacuoles purified by magnetic immunoseparation reveals secretory and endosomal GTPases, Traffic, vol.10, issue.1, pp.76-87, 2009.

C. Hoffmann, I. Finsel, A. Otto, G. Pfaffinger, and E. Rothmeier, Functional analysis of novel Rab GTPases identified in the proteome of purified Legionella-containing vacuoles from macrophages, Cell. Microbiol, vol.16, issue.7, pp.1034-52, 2014.

D. C. Lawe, A. Chawla, E. Merithew, J. Dumas, and W. Carrington, Sequential roles for phosphatidylinositol 3-phosphate and Rab5 in tethering and fusion of early endosomes via their interaction with EEA1, J. Biol. Chem, vol.277, issue.10, pp.8611-8628, 2002.

A. H. Gaspar and M. P. Machner, VipD is a Rab5-activated phospholipase A1 that protects Legionella pneumophila from endosomal fusion, PNAS, vol.111, issue.12, pp.4560-65, 2014.

A. Mousnier, G. N. Schroeder, C. A. Stoneham, E. C. So, and J. A. Garnett, A new method to determine in vivo interactomes reveals binding of the Legionella pneumophila effector PieE to multiple Rab GTPases, mBio, vol.5, issue.4, pp.1148-1162, 2014.

J. Rink, E. Ghigo, Y. Kalaidzidis, and M. Zerial, Rab conversion as a mechanism of progression from early to late endosomes, Cell, vol.122, issue.5, pp.735-784, 2005.

R. Rojas, T. Van-vlijmen, G. A. Mardones, Y. Prabhu, and A. L. Rojas, Regulation of retromer recruitment to endosomes by sequential action of Rab5 and Rab7, J. Cell Biol, vol.183, issue.3, pp.513-539, 2008.

I. Finsel, C. Ragaz, C. Hoffmann, C. F. Harrison, and S. Weber, The Legionella effector RidL inhibits retrograde trafficking to promote intracellular replication, Cell Host Microbe, vol.29, 2013.

C. G. Robinson and C. R. Roy, Attachment and fusion of endoplasmic reticulum with vacuoles containing Legionella pneumophila, Cell. Microbiol, vol.8, issue.5, pp.793-805, 2006.

J. C. Kagan and C. R. Roy, Legionella phagosomes intercept vesicular traffic from endoplasmic reticulum exit sites, Nat. Cell Biol, vol.4, issue.12, pp.945-54, 2002.

S. Schoebel, L. K. Oesterlin, W. Blankenfeldt, R. S. Goody, and A. Itzen, RabGDI displacement by DrrA from Legionella is a consequence of its guanine nucleotide exchange activity, Mol. Cell, vol.36, issue.6, pp.1060-72, 2009.

T. Murata, A. Delprato, A. Ingmundson, D. K. Toomre, D. G. Lambright et al., The Legionella pneumophila effector protein DrrA is a Rab1 guanine nucleotide-exchange factor, Nat. Cell Biol, vol.8, issue.9, pp.971-77, 2006.

M. P. Machner and R. R. Isberg, A bifunctional bacterial protein links GDI displacement to Rab1 activation, Science, vol.318, issue.5852, pp.974-77, 2007.

M. P. Müller, H. Peters, J. Blümer, W. Blankenfeldt, R. S. Goody et al., The Legionella effector protein DrrA AMPylates the membrane traffic regulator Rab1b, Science, vol.329, issue.5994, pp.946-995, 2010.

M. P. Machner and R. R. Isberg, Targeting of host Rab GTPase function by the intravacuolar pathogen Legionella pneumophila, Dev. Cell, vol.11, issue.1, pp.47-56, 2006.

M. R. Neunuebel, Y. Chen, A. H. Gaspar, P. S. Backlund, A. Yergey et al., De-AMPylation of the small GTPase Rab1 by the pathogen Legionella pneumophila, Science, vol.333, issue.6041, pp.453-56, 2011.

A. Ingmundson, A. Delprato, D. G. Lambright, and C. R. Roy, Legionella pneumophila proteins that regulate Rab1 membrane cycling, Nature, vol.450, issue.7168, pp.365-69, 2007.

S. Mukherjee, X. Liu, K. Arasaki, J. Mcdonough, J. E. Galán et al., Modulation of Rab GTPase function by a protein phosphocholine transferase, Nature, vol.477, issue.7362, pp.103-109, 2011.

Y. Tan, R. J. Arnold, and Z. Luo, Legionella pneumophila regulates the small GTPase Rab1 activity by reversible phosphorylcholination, PNAS, vol.108, issue.52, pp.21212-21229, 2011.

H. Nagai, J. C. Kagan, X. Zhu, R. A. Kahn, and C. R. Roy, A bacterial guanine nucleotide exchange factor activates ARF on Legionella phagosomes, Science, vol.295, issue.5555, pp.679-82, 2002.

A. Hubber, K. Arasaki, F. Nakatsu, C. Hardiman, and D. Lambright, The machinery at endoplasmic reticulum-plasma membrane contact sites contributes to spatial regulation of 30, 2014.

, multiple Legionella effector proteins, PLOS Pathog, vol.10, issue.7, p.1004222

E. Haenssler, V. Ramabhadran, C. S. Murphy, M. I. Heidtman, and R. R. Isberg, Endoplasmic reticulum tubule protein reticulon 4 associates with the Legionella pneumophila vacuole and with translocated substrate Ceg9, Infect. Immun, vol.83, issue.9, pp.3479-89, 2015.

K. Arasaki and C. R. Roy, Legionella pneumophila promotes functional interactions between plasma membrane syntaxins and Sec22b, Traffic, vol.11, issue.5, pp.587-600, 2010.

R. Jahn and R. H. Scheller, SNAREs-engines for membrane fusion, Nat. Rev. Mol. Cell Biol, vol.7, issue.9, pp.631-674, 2006.

K. Arasaki, D. K. Toomre, and C. R. Roy, The Legionella pneumophila effector DrrA is sufficient to stimulate SNARE-dependent membrane fusion, Cell Host Microbe, vol.11, issue.1, pp.46-57, 2012.

N. P. King, P. Newton, R. Schuelein, D. L. Brown, and M. Petru, Soluble NSF attachment protein receptor molecular mimicry by a Legionella pneumophila Dot/Icm effector, Cell. Microbiol, vol.17, issue.6, pp.767-84, 2015.

T. L. Bennett, S. M. Kraft, B. J. Reaves, J. Mima, K. M. O'brien et al., LegC3, an effector protein from Legionella pneumophila, inhibits homotypic yeast vacuole fusion in vivo and in vitro, PLOS ONE, vol.8, issue.2, p.56798, 2013.

E. Rothmeier, G. Pfaffinger, C. Hoffmann, C. F. Harrison, and H. Grabmayr, Activation of Ran GTPase by a Legionella effector promotes microtubule polymerization, pathogen vacuole motility and infection, PLOS Pathog, vol.9, issue.9, p.1003598, 2013.

P. Escoll, O. Song, F. Viana, B. Steiner, and T. Lagache, Legionella pneumophila modulates mitochondrial dynamics to trigger metabolic repurposing of infected macrophages, Cell Host Microbe, vol.22, issue.3, pp.302-309, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-01687682

P. Escoll and C. Buchrieser, Metabolic reprogramming of host cells upon bacterial infection: Why shift to a Warburg-like metabolism?, FEBS J, vol.285, issue.12, pp.2146-60, 2018.
URL : https://hal.archives-ouvertes.fr/pasteur-02437195

A. O. Amer and M. S. Swanson, Autophagy is an immediate macrophage response to Legionella pneumophila, Cell. Microbiol, vol.7, issue.6, pp.765-78, 2005.

A. Choy, J. Dancourt, B. Mugo, T. J. O'connor, and R. R. Isberg, The Legionella effector RavZ inhibits host autophagy through irreversible Atg8 deconjugation, Science, vol.338, issue.6110, pp.1072-76, 2012.

K. Arasaki, Y. Mikami, S. R. Shames, H. Inoue, Y. Wakana et al., Legionella effector Lpg1137 shuts down ER-mitochondria communication through cleavage of syntaxin eukaryotic MAPK pathways, J. Biol. Chem, vol.293, issue.9, pp.3307-3327, 2017.

M. Rolando, S. Sanulli, C. Rusniok, L. Gomez-valero, and C. Bertholet, Legionella pneumophila effector RomA uniquely modifies host chromatin to repress gene expression and promote intracellular bacterial replication, Cell Host Microbe, vol.13, issue.4, pp.395-405, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01336636

R. Schuelein, H. Spencer, L. F. Dagley, P. F. Li, and L. Luo, Targeting of RNA Polymerase II by a nuclear Legionella pneumophila Dot/Icm effector SnpL, Cell. Microbiol, vol.20, issue.9, p.12852, 2018.

T. Kubori, A. Hyakutake, and H. Nagai, Legionella translocates an E3 ubiquitin ligase that has multiple U-boxes with distinct functions, Mol. Microbiol, vol.67, issue.6, pp.1307-1326, 2008.

Y. Lin, A. G. Doms, E. Cheng, B. Kim, T. R. Evans et al., Host cell-catalyzed S-palmitoylation mediates Golgi targeting of the Legionella ubiquitin ligase GobX, J. Biol. Chem, vol.290, issue.42, pp.25766-81, 2015.

Y. Lin, M. Lucas, T. R. Evans, G. Abascal-palacios, and A. G. Doms, RavN is a member of a previously unrecognized group of Legionella pneumophila E3 ubiquitin ligases, PLOS Pathog, vol.14, issue.2, p.1006897, 2018.

C. Ragaz, H. Pietsch, S. Urwyler, A. Tiaden, S. S. Weber et al., The Legionella pneumophila phosphatidylinositol-4 phosphate-binding type IV substrate SidC recruits endoplasmic reticulum vesicles to a replication-permissive vacuole, Cell. Microbiol, vol.10, issue.12, pp.2416-2449, 2008.

F. Hsu, X. Luo, J. Qiu, Y. Teng, and J. J. , The Legionella effector SidC defines a unique family of ubiquitin ligases important for bacterial phagosomal remodeling, PNAS, vol.111, issue.29, pp.10538-10581, 2014.

A. W. Ensminger and R. R. Isberg, E3 ubiquitin ligase activity and targeting of BAT3 by multiple Legionella pneumophila translocated substrates, Infect. Immun, vol.78, issue.9, pp.3905-3924, 2010.

M. Lomma, D. Dervins-ravault, R. M. , N. T. Newton, and H. J. , The Legionella pneumophila F-box protein Lpp2082 (AnkB) modulates ubiquitination of the host protein parvin B and promotes intracellular replication, Cell. Microbiol, vol.12, issue.9, pp.1272-91, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02661576

C. Price, T. Al-quadan, M. Santic, I. Rosenshine, A. Kwaik et al., Host proteasomal degradation generates amino acids essential for intracellular bacterial growth, Science, vol.334, issue.6062, pp.1553-57, 2011.

J. Qiu, M. J. Sheedlo, K. Yu, Y. Tan, and E. S. Nakayasu, Ubiquitination independent of 33 E1 and E2 enzymes by bacterial effectors, Nature, vol.533, issue.7601, pp.120-144, 2016.

S. Bhogaraju, S. Kalayil, Y. Liu, F. Bonn, and T. Colby, Phosphoribosylation of ubiquitin promotes serine ubiquitination and impairs conventional ubiquitination, Cell, vol.167, issue.6, pp.1636-1649, 2016.

J. Qiu, K. Yu, X. Fei, Y. Liu, and E. S. Nakayasu, A unique deubiquitinase that deconjugates phosphoribosyl-linked protein ubiquitination, Cell Res, vol.27, issue.7, pp.865-81, 2017.

K. M. Kotewicz, V. Ramabhadran, N. Sjoblom, J. P. Vogel, and E. Haenssler, A single Legionella effector catalyzes a multistep ubiquitination pathway to rearrange tubular endoplasmic reticulum for replication, Cell Host Microbe, vol.21, issue.2, pp.169-81, 2017.

T. Kubori, T. Kitao, H. Ando, and H. Nagai, LotA, a Legionella deubiquitinase, has dual catalytic activity and contributes to intracellular growth, Cell. Microbiol, vol.20, issue.7, p.12840, 2018.

Z. Luo, Striking a balance: modulation of host cell death pathways by Legionella pneumophila, Front. Microbiol, vol.2, p.36, 2011.

S. Banga, P. Gao, X. Shen, V. Fiscus, and W. Zong, Legionella pneumophila inhibits macrophage apoptosis by targeting pro-death members of the Bcl2 protein family, PNAS, vol.104, issue.12, pp.5121-5147, 2007.

R. K. Laguna, E. A. Creasey, Z. Li, N. Valtz, and R. R. Isberg, A Legionella pneumophilatranslocated substrate that is required for growth within macrophages and protection from host cell death, PNAS, vol.103, issue.49, pp.18745-50, 2006.

W. Zhu, L. A. Hammad, F. Hsu, Y. Mao, and Z. Luo, Induction of caspase 3 activation by multiple Legionella pneumophila Dot/Icm substrates, Cell. Microbiol, vol.15, issue.11, pp.1783-95, 2013.

Z. Lifshitz, D. Burstein, M. Peeri, T. Zusman, and K. Schwartz, Computational modeling and experimental validation of the Legionella and Coxiella virulence-related type-IVB secretion signal, PNAS, vol.110, issue.8, pp.707-722, 2013.

W. Zhu, S. Banga, Y. Tan, C. Zheng, and R. Stephenson, Comprehensive identification of protein substrates of the Dot/Icm type IV transporter of Legionella pneumophila, PLOS ONE, vol.6, issue.3, p.17638, 2011.

P. Escoll, S. Mondino, M. Rolando, and C. Buchrieser, Targeting of host organelles by pathogenic bacteria: a sophisticated subversion strategy, Nat. Rev. Microbiol, vol.14, issue.1, pp.5-19, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01326394

G. N. Schroeder, The toolbox for uncovering the functions of Legionella Dot/Icm type IVb secretion system effectors: current state and future directions, Front. Cell. Infect, vol.34, 2017.

. Microbiol, , vol.7, p.528

T. J. O'connor, Y. Adepoju, D. Boyd, and R. R. Isberg, Minimization of the Legionella pneumophila genome reveals chromosomal regions involved in host range expansion, PNAS, vol.108, issue.36, pp.14733-14773, 2011.

Y. Belyi, T. Jank, and K. Aktories, Cytotoxic glucosyltransferases of Legionella pneumophila, Molecular Mechanisms in Legionella Pathogenesis, pp.211-237, 2013.

T. Kubori, N. Shinzawa, H. Kanuka, and H. Nagai, Legionella metaeffector exploits host proteasome to temporally regulate cognate effector, PLOS Pathog, vol.6, issue.12, p.1001216, 2010.

K. C. Jeong, J. A. Sexton, and J. P. Vogel, Spatiotemporal regulation of a Legionella pneumophila T4SS substrate by the metaeffector SidJ, PLOS Pathog, vol.11, issue.3, p.1004695, 2015.

S. R. Shames, L. Liu, J. C. Havey, W. B. Schofield, A. L. Goodman et al., Multiple Legionella pneumophila effector virulence phenotypes revealed through high-throughput analysis of targeted mutant libraries, PNAS, vol.114, issue.48, pp.10446-54, 2017.

D. Valleau, A. T. Quaile, H. Cui, X. Xu, and E. Evdokimova, Discovery of ubiquitin deamidases in the pathogenic arsenal of Legionella pneumophila, Cell Rep, vol.23, issue.2, pp.568-83, 2018.

M. L. Urbanus, A. T. Quaile, P. J. Stogios, M. Morar, and C. Rao, Diverse mechanisms of metaeffector activity in an intracellular bacterial pathogen, Legionella pneumophila, Mol. Syst. Biol, vol.12, issue.12, p.893, 2016.

C. Cazalet, C. Rusniok, H. Brüggemann, N. Zidane, and A. Magnier, Evidence in the Legionella pneumophila genome for exploitation of host cell functions and high genome plasticity, Nat. Genet, vol.36, issue.11, pp.1165-73, 2004.

K. S. De-felipe, S. Pampou, O. S. Jovanovic, C. D. Pericone, and S. F. Ye, Evidence for acquisition of Legionella type IV secretion substrates via interdomain horizontal gene transfer, J. Bacteriol, vol.187, issue.22, pp.7716-7742, 2005.

L. Gomez-valero, C. Rusniok, and C. Buchrieser, Legionella pneumophila: population genetics, phylogeny and genomics, Infect. Genet. Evol, vol.9, issue.5, pp.727-766, 2009.

M. N. Lurie-weinberger, L. Gomez-valero, N. Merault, G. Glöckner, C. Buchrieser et al., The origins of eukaryotic-like proteins in Legionella pneumophila, Int. J. Med. Microbiol, vol.300, issue.7, pp.470-81, 2010.

E. Degtyar, T. Zusman, M. Ehrlich, and G. Segal, , p.35, 2009.

L. Gomez-valero and C. Buchrieser, Genome dynamics in Legionella: the basis of versatility and adaptation to intracellular replication, Cold Spring Harb. Perspect. Med, vol.3, issue.6, p.9993, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01333411

T. Nora, M. Lomma, L. Gomez-valero, and C. Buchrieser, Molecular mimicry: an important virulence strategy employed by Legionella pneumophila to subvert host functions, Future Microbiol, vol.4, issue.6, pp.691-701, 2009.

D. Burstein, F. Amaro, T. Zusman, Z. Lifshitz, and O. Cohen, , p.38, 2016.

, Legionella species identifies large and diverse effector repertoires, Nat. Genet, vol.48, issue.2, pp.167-75

M. M. Weber and R. Faris, Subversion of the endocytic and secretory pathways by bacterial effector proteins, Front. Cell Dev. Biol, vol.6, p.1, 2018.

S. Dolinsky, I. Haneburger, A. Cichy, M. Hannemann, A. Itzen et al., The Legionella longbeachae Icm/Dot substrate SidC selectively binds phosphatidylinositol 4-phosphate with nanomolar affinity and promotes pathogen vacuole-endoplasmic reticulum interactions, Infect. Immun, vol.82, issue.10, pp.4021-4054, 2014.

R. E. Wood, P. Newton, E. A. Latomanski, and H. J. Newton, Dot/Icm effector translocation by Legionella longbeachae creates a replicative vacuole similar to that of Legionella pneumophila despite translocation of distinct effector repertoires, Infect. Immun, vol.83, issue.10, pp.4081-92, 2015.

D. K. Boamah, G. Zhou, A. W. Ensminger, and T. J. O'connor, From many hosts, one accidental pathogen: the diverse protozoan hosts of Legionella, Front. Cell. Infect. Microbiol, vol.7, p.477, 2017.

J. Barker and M. R. Brown, Trojan horses of the microbial world: protozoa and the survival of bacterial pathogens in the environment, Microbiology, vol.140, issue.6, pp.1253-59, 1994.

P. Scheid, Relevance of free-living amoebae as hosts for phylogenetically diverse microorganisms, Parasitol. Res, vol.113, issue.7, pp.2407-2421, 2014.

A. M. Richards, V. Dwingelo, J. E. Price, C. T. , A. Kwaik et al., Cellular microbiology and molecular ecology of Legionella-amoeba interaction, Virulence, vol.4, issue.4, pp.307-321, 2013.

N. A. Broderick, A common origin for immunity and digestion, Front. Immunol, vol.6, p.72, 2015.

A. Casadevall, M. S. Fu, A. J. Guimaraes, and P. Albuquerque, The 'amoeboid predator-36 fungal animal virulence' hypothesis, J. Fungi, vol.5, issue.1, p.10, 2019.

C. Moliner, P. Fournier, and D. Raoult, Genome analysis of microorganisms living in amoebae reveals a melting pot of evolution, FEMS Microbiol. Rev, vol.34, issue.3, pp.281-94, 2010.

F. Schulz, J. Martijn, F. Wascher, I. Lagkouvardos, and R. Kostanj?ek, A Rickettsiales symbiont of amoebae with ancient features, Environ. Microbiol, vol.18, issue.8, pp.2326-2368, 2016.

S. Schmitz-esser, P. Tischler, R. Arnold, J. Montanaro, and M. Wagner, The genome of the amoeba symbiont "Candidatus Amoebophilus asiaticus" reveals common mechanisms for host cell interaction among amoeba-associated bacteria, J. Bacteriol, vol.192, issue.4, pp.1045-57, 2010.

A. W. Ensminger, Legionella pneumophila, armed to the hilt: justifying the largest arsenal of effectors in the bacterial world, Curr. Opin. Microbiol, vol.29, pp.74-80, 2016.

B. Zhao, W. Xu, B. Rong, G. Chen, and X. Ye, H3K14me3 genomic distributions and its regulation by KDM4 family demethylases, Cell Res, vol.28, issue.11, pp.1118-1138, 2018.

A. T. Grzybowski, Z. Chen, and A. J. Ruthenburg, Calibrating ChIP-Seq with nucleosomal internal standards to measure histone modification density genome wide, Mol. Cell, vol.58, issue.5, pp.886-99, 2015.

A. Bansal, T. R. Singh, and R. S. Chauhan, A novel miRNA analysis framework to analyze differential biological networks, Sci. Rep, vol.7, issue.1, p.14604, 2017.

D. E. Schones, K. Cui, S. Cuddapah, T. Roh, and A. Barski, Dynamic regulation of nucleosome positioning in the human genome, Cell, vol.132, issue.5, pp.887-98, 2008.

E. Eylert, V. Herrmann, J. M. Gillmaier, N. Lautner, and M. , Isotopologue profiling of Legionella pneumophila: role of serine and glucose as carbon substrates, J. Biol. Chem, vol.285, issue.29, pp.22232-22275, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02661810

T. C. Alves, R. L. Pongratz, X. Zhao, O. Yarborough, and S. Sereda, Integrated, stepwise, mass-isotopomeric flux analysis of the TCA cycle, Cell Metab, vol.22, issue.5, pp.936-983, 2015.

N. Grankvist, J. D. Watrous, K. A. Lagerborg, Y. Lyutvinskiy, M. Jain et al., Profiling the metabolism of human cells by deep 13 C labelling, Cell Chem. Biol, vol.25, issue.11, pp.1419-1427, 2018.

R. P. Dickson, J. R. Erb-downward, and G. B. Huffnagle, Homeostasis and its disruption in the lung microbiome, Am. J. Physiol. Lung Cell. Mol. Physiol, vol.309, issue.10, pp.1047-55, 2015.

A. E. Pérez-cobas and C. Buchrieser, Analysis of the pulmonary microbiome composition of Legionella pneumophila-infected patients, Methods Mol. Biol, vol.1921, issue.4, p.37, 2019.

T. Pham and T. D. Lawley, Emerging insights on intestinal dysbiosis during bacterial infections, Curr. Opin. Microbiol, vol.17, pp.67-74, 2014.

S. Hadifar, A. Fateh, M. H. Yousefi, S. D. Siadat, and F. Vaziri, Exosomes in tuberculosis: still terra incognita?, J. Cell. Physiol, vol.234, issue.3, pp.2104-2115, 2019.

V. N. Uversky, Intrinsically disordered proteins in overcrowded milieu: membrane-less organelles, phase separation, and intrinsic disorder, Curr. Opin. Struct. Biol, vol.44, pp.18-30, 2017.

B. Onfelt, S. Nedvetzki, R. Benninger, M. A. Purbhoo, and S. Sowinski, Structurally distinct membrane nanotubes between human macrophages support long-distance vesicular traffic or surfing of bacteria, J. Immunol, vol.177, issue.12, pp.8476-83, 2006.

A. K. Baidya, S. Bhattacharya, G. P. Dubey, G. Mamou, and S. Ben-yehuda, Bacterial nanotubes: a conduit for intercellular molecular trade, Curr. Opin. Microbiol, vol.42, pp.1-6, 2018.

D. E. Gottschling and T. Nyström, The upsides and downsides of organelle interconnectivity, Cell, vol.169, issue.1, pp.24-34, 2017.

C. Staerck, A. Gastebois, P. Vandeputte, A. Calenda, and G. Larcher, Microbial antioxidant defense enzymes, Microb. Pathog, vol.110, pp.56-65, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02407936

M. Islinger, A. Voelkl, H. D. Fahimi, and M. Schrader, The peroxisome: an update on mysteries 2.0. Histochem, Cell Biol, vol.150, issue.5, pp.443-71, 2018.

H. Whiley and R. Bentham, Legionella longbeachae and legionellosis, Emerg. Infect. Dis, vol.17, issue.4, pp.579-83, 2011.

A. Brassinga, J. M. Kinchen, M. E. Cupp, S. R. Day, P. S. Hoffman et al., Caenorhabditis is a metazoan host for Legionella, Cell. Microbiol, vol.12, issue.3, pp.343-61, 2010.

M. Fabbi, M. C. Pastoris, E. Scanziani, S. Magnino, D. Matteo et al., Epidemiological and environmental investigations of Legionella pneumophila infection in cattle and case report of fatal pneumonia in a calf, J. Clin. Microbiol, vol.36, issue.7, pp.1942-1989, 1998.

R. Mcdonald, H. J. Schreier, and J. Watts, Phylogenetic analysis of microbial communities in different regions of the gastrointestinal tract in Panaque nigrolineatus, a wood-eating fish, PLOS ONE, vol.7, issue.10, p.48018, 2012.

S. Schoebel, W. Blankenfeldt, R. S. Goody, and A. Itzen, High-affinity binding of phosphatidylinositol 4-phosphate by Legionella pneumophila DrrA, EMBO Rep, vol.11, issue.8, pp.598-604, 2010.