S. Anders and W. Huber, Differential expression analysis for sequence count data, Genome Biol, vol.11, p.106, 2010.

J. M. Beman, J. A. Steele, and J. A. Fuhrman, Co-occurrence patterns for abundant marine archaeal and bacterial lineages in the deep chlorophyll maximum of coastal California, ISME J, vol.5, pp.1077-1085, 2011.

J. Blustein, T. Attina, M. Liu, A. M. Ryan, L. M. Cox et al., Association of caesarean delivery with child adiposity from age 6 weeks to 15 years, Int. J. Obes, vol.37, pp.900-906, 2013.

L. Breiman, Bagging predictors, Mach. Learn, vol.24, pp.123-140, 1996.

V. Bucci, B. Tzen, N. Li, M. Simmons, T. Tanoue et al., MDSINE: microbial dynamical systems inference engine for microbiome timeseries analyses, Genome Biol, vol.17, p.121, 2016.

K. Faust, J. F. Sathirapongsasuti, J. Izard, N. Segata, D. Gevers et al., Microbial co-occurrence relationships in the human microbiome, PLoS Comput. Biol, vol.8, p.1002606, 2012.

C. K. Fisher and P. Mehta, Identifying keystone species in the human gut microbiome from metagenomic timeseries using sparse linear regression, PLoS ONE, vol.9, p.102451, 2014.

J. Friedman, A. , and E. J. , Inferring correlation networks from genomic survey data, PLoS Comput. Biol, vol.8, p.1002687, 2012.

W. A. Fuller, Properties of some estimators for the errors-in-variables model, Ann. Stat, vol.8, pp.407-422, 1980.

X. Gao, B. Huynh, D. Guillemot, P. Glaser, and L. Opatowski, Inference of significant microbial interactions from longitudinal metagenomics sequencing data. bioRxiv, 2018.

S. Y. Huh, S. L. Rifas-shiman, C. A. Zera, J. W. Edwards, E. Oken et al., Delivery by caesarean section and risk of obesity in preschool age children: a prospective cohort study, Arch. Dis. Child, vol.97, pp.610-616, 2012.

R. E. Kass and L. Wasserman, A reference bayesian test for nested hypotheses and its relationship to the schwarz criterion, J. Am. Stat. Assoc, vol.90, pp.928-934, 1995.

A. D. Kostic, D. Gevers, H. Siljander, T. Vatanen, T. Hyotylainen et al., The dynamics of the human infant gut microbiome in development and in progression toward type 1 diabetes, Cell Host Microbe, vol.17, pp.260-273, 2015.

O. Manor and E. Borenstein, Systematic characterization and analysis of the taxonomic drivers of functional shifts in the human microbiome, Cell Host Microbe, vol.21, pp.254-267, 2017.

S. Marino, N. T. Baxter, G. B. Huffnagle, J. F. Petrosino, and P. D. Schloss, Mathematical modeling of primary succession of murine intestinal microbiota, Proc. Natl. Acad. Sci. U. S. A, vol.111, pp.439-444, 2014.

J. Mirpuri, M. Raetz, C. R. Sturge, C. L. Wilhelm, A. Benson et al., Proteobacteria-specific IgA regulates maturation of the intestinal microbiota, Gut Microbes, vol.5, pp.28-39, 2014.

B. E. Morris, R. Henneberger, H. Huber, and C. Eichinger, Microbial syntrophy: interaction for the common good, FEMS Microbiol. Rev, vol.37, pp.384-406, 2013.

J. Mounier, C. Monnet, T. Vallaeys, R. Arditi, A. S. Sarthou et al., Microbial interactions within a cheese microbial community, Appl. Environ. Microbiol, vol.74, pp.172-181, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00556971

M. Murri, I. Leiva, J. M. Gomez-zumaquero, F. J. Tinahones, F. Cardona et al., Gut microbiota in children with type 1 diabetes differs from that in healthy children: a case-control study, BMC Med, vol.11, p.46, 2013.

M. Newville, T. Stensitzki, D. B. Allen, M. Rawlik, A. Ingargiola et al., Lmfit: non-linear least-square minimization and curve-fitting for python, Code Source Lib, 2016.

K. Pearson, Determination of the coefficient of correlation, Science, vol.30, pp.23-25, 1909.

D. N. Reshef, Y. A. Reshef, H. K. Finucane, S. R. Grossman, G. Mcvean et al., Detecting novel associations in large data sets, Science, vol.334, pp.1518-1524, 2011.

D. Rios-covian, P. Ruas-madiedo, A. Margolles, M. Gueimonde, C. G. De-los-reyes-gavilan et al., Intestinal short chain fatty acids and their link with diet and human health, Front. Microbiol, vol.7, p.185, 2016.

R. Bray, J. , C. , and J. T. , An ordination of the upland forest communities of southern wisconsin, Ecol. Monogr, vol.27, pp.325-349, 1957.

Q. Ruan, D. Dutta, M. S. Schwalbach, J. A. Steele, J. A. Fuhrman et al., Local similarity analysis reveals unique associations among marine bacterioplankton species and environmental factors, Bioinformatics, vol.22, pp.2532-2538, 2006.

F. Savino, A. Quartieri, A. De-marco, M. Garro, A. Amaretti et al., Comparison of formula-fed infants with and without colic revealed significant differences in total bacteria, Enterobacteriaceae and faecal ammonia, Acta Paediatr, vol.106, pp.573-578, 2017.

I. Sekirov, S. L. Russell, L. C. Antunes, and B. B. Finlay, Gut microbiota in health and disease, Physiol. Rev, vol.90, pp.859-904, 2010.

G. T. Shaw, Y. Y. Pao, W. , and D. , MetaMIS: a metagenomic microbial interaction simulator based on microbial community profiles, BMC Bioinformatics, vol.17, p.488, 2016.

C. Spearman, The proof and measurement of association between two things, Int. J. Epidemiol, vol.39, pp.1137-1150, 2010.

J. A. Steele, P. D. Countway, L. Xia, P. D. Vigil, J. M. Beman et al., Marine bacterial, archaeal and protistan association networks reveal ecological linkages, ISME J, vol.5, pp.1414-1425, 2011.

R. R. Stein, V. Bucci, N. C. Toussaint, C. G. Buffie, G. Ratsch et al., Ecological modeling from time-series inference: insight into dynamics and stability of intestinal microbiota, PLoS Comput. Biol, vol.9, p.1003388, 2013.

J. Sun, C. , and E. B. , Exploring gut microbes in human health and disease: pushing the envelope, Genes Dis, vol.1, pp.132-139, 2014.

S. Weiss, W. Van-treuren, C. Lozupone, K. Faust, J. Friedman et al., Correlation detection strategies in microbial data sets vary widely in sensitivity and precision, ISME J, vol.10, pp.1669-1681, 2016.

L. C. Xia, D. Ai, J. Cram, J. A. Fuhrman, and F. Sun, Efficient statistical significance approximation for local similarity analysis of high-throughput time series data, Bioinformatics, vol.29, pp.230-237, 2013.