C. L. Kirkpatrick and P. H. Viollier, Poles apart: prokaryotic polar organelles and their spatial regulation, Cold Spring Harb. Perspect. Biol, vol.3, p.6809, 2011.

G. Laloux and C. Jacobs-wagner, How do bacteria localize proteins to the cell pole?, J. Cell Sci, vol.127, pp.11-19, 2014.

M. Howell and P. J. Brown, Building the bacterial cell wall at the pole, Curr. Opin. Microbiol, vol.34, pp.53-59, 2016.

A. Janakiraman and M. B. Goldberg, Recent advances on the development of bacterial poles, Trends Microbiol, vol.12, pp.518-525, 2004.

A. B. Lindner, R. Madden, A. Demarez, E. J. Stewart, and F. Taddei, Asymmetric segregation of protein aggregates is associated with cellular aging and rejuvenation, Proc. Natl Acad. Sci. USA, vol.105, pp.3076-3081, 2008.

J. Winkler, Quantitative and spatio-temporal features of protein aggregation in Escherichia coli and consequences on protein quality control and cellular ageing, EMBO J, vol.29, pp.910-923, 2010.

L. J. Wu and J. Errington, Nucleoid occlusion and bacterial cell division, Nat. Rev. Microbiol, vol.10, pp.8-12, 2012.

A. S. Coquel, Localization of protein aggregation in Escherichia coli is governed by diffusion and nucleoid macromolecular crowding effect, PLoS Comput. Biol, vol.9, p.1003038, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00798053

K. Scheu, R. Gill, S. Saberi, P. Meyer, and E. Emberly, Localization of aggregating proteins in bacteria depends on the rate of addition, Front Microbiol, vol.5, p.418, 2014.

D. Landgraf, B. Okumus, P. Chien, T. A. Baker, and J. Paulsson, Segregation of molecules at cell division reveals native protein localization, Nat. Methods, vol.9, pp.480-482, 2012.

V. Jaumouille, O. Francetic, P. J. Sansonetti, and G. Tran-van-nhieu, Cytoplasmic targeting of IpaC to the bacterial pole directs polar type III secretion in Shigella, EMBO J, vol.27, pp.447-457, 2008.

A. Janakiraman, K. R. Fixen, A. N. Gray, H. Niki, and M. B. Goldberg, A genome-scale proteomic screen identifies a role for DnaK in chaperoning of polar autotransporters in Shigella, J. Bacteriol, vol.191, pp.6300-6311, 2009.

D. P. Haeusser and W. Margolin, Splitsville: structural and functional insights into the dynamic bacterial Z ring, Nat. Rev. Microbiol, vol.14, pp.305-319, 2016.

R. L. Gill, Structural basis for the geometry-driven localization of a small protein, Proc. Natl Acad. Sci. USA, vol.112, pp.1908-1915, 2015.

T. Romantsov, A. R. Battle, J. L. Hendel, B. Martinac, and J. M. Wood, Protein localization in Escherichia coli cells: comparison of the cytoplasmic membrane proteins ProP, LacY, ProW, AqpZ, MscS, and MscL, J. Bacteriol, vol.192, pp.912-924, 2010.

G. Laloux and C. Jacobs-wagner, Spatiotemporal control of PopZ localization through cell cycle-coupled multimerization, J. Cell Biol, vol.201, pp.827-841, 2013.

S. Jain, Polar localization of the autotransporter family of large bacterial virulence proteins, J. Bacteriol, vol.188, pp.4841-4850, 2006.

M. Charles, M. Perez, J. H. Kobil, and M. B. Goldberg, Polar targeting of Shigella virulence factor IcsA in Enterobacteriacae and Vibrio, Proc. Natl Acad. Sci. USA, vol.98, pp.9871-9876, 2001.

G. Calloni, DnaK functions as a central hub in the E. coli chaperone network, Cell Rep, vol.1, pp.251-264, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00787591

P. T. Wingfield, I. Palmer, and S. M. Liang, Folding and purification of insoluble (inclusion body) proteins from Escherichia coli, Curr. Protoc. Protein Sci, vol.78, pp.1-30, 2014.

G. R. Bowman, Caulobacter PopZ forms a polar subdomain dictating sequential changes in pole composition and function, Mol. Microbiol, vol.76, pp.173-189, 2010.

G. R. Bowman, A polymeric protein anchors the chromosomal origin/ ParB complex at a bacterial cell pole, Cell, vol.134, pp.945-955, 2008.

H. J. Schonfeld, D. Schmidt, H. Schroder, and B. Bukau, The DnaK chaperone system of Escherichia coli: quaternary structures and interactions of the DnaK and GrpE components, J. Biol. Chem, vol.270, pp.2183-2189, 1995.

A. D. Thompson, S. M. Bernard, G. Skiniotis, and J. E. Gestwicki, Visualization and functional analysis of the oligomeric states of Escherichia coli heat shock protein 70 (Hsp70/DnaK), Cell Stress Chaperon, vol.17, pp.313-327, 2012.

A. Rokney, E. coli transports aggregated proteins to the poles by a specific and energy-dependent process, J. Mol. Biol, vol.392, pp.589-601, 2009.

A. Mogk, D. Huber, and B. Bukau, Integrating protein homeostasis strategies in prokaryotes, Cold Spring Harb. Perspect. Biol, vol.3, p.4366, 2011.

T. K. Barthel, J. Zhang, and G. C. Walker, ATPase-defective derivatives of Escherichia coli DnaK that behave differently with respect to ATP-induced conformational change and peptide release, J. Bacteriol, vol.183, pp.5482-5490, 2001.

P. Genevaux, C. Georgopoulos, and W. L. Kelley, The Hsp70 chaperone machines of Escherichia coli: a paradigm for the repartition of chaperone functions, Mol. Microbiol, vol.66, pp.840-857, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00211365

M. Zahn, Structural studies on the forward and reverse binding modes of peptides to the chaperone DnaK, J. Mol. Biol, vol.425, pp.2463-2479, 2013.

S. Jun and B. Mulder, Entropy-driven spatial organization of highly confined polymers: lessons for the bacterial chromosome, Proc. Natl Acad. Sci. USA, vol.103, pp.12388-12393, 2006.

N. S. Wingreen and K. C. Huang, Physics of intracellular organization in bacteria, Annu Rev. Microbiol, vol.69, pp.361-379, 2015.

A. Gupta, J. Lloyd-price, R. Neeli-venkata, S. M. Oliveira, and A. S. Ribeiro, In vivo kinetics of segregation and polar retention of MS2-GFP-RNA complexes in Escherichia coli, Biophys. J, vol.106, pp.1928-1937, 2014.

B. R. Parry, The bacterial cytoplasm has glass-like properties and is fluidized by metabolic activity, Cell, vol.156, pp.183-194, 2014.

O. Sharma, Structure of the complex of the colicin E2 R-domain and its BtuB receptor. The outer membrane colicin translocon, J. Biol. Chem, vol.282, pp.23163-23170, 2007.

H. Brotz-oesterhelt, Specific and potent inhibition of NAD + -dependent DNA ligase by pyridochromanones, J. Biol. Chem, vol.278, pp.39435-39442, 2003.

T. Nagai, A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications, Nat. Biotechnol, vol.20, pp.87-90, 2002.

X. Xu, Unique peptide substrate binding properties of 110-kDa heatshock protein (Hsp110) determine its distinct chaperone activity, J. Biol. Chem, vol.287, pp.5661-5672, 2012.

M. P. Mayer and B. Bukau, Hsp70 chaperones: cellular functions and molecular mechanism, Cell Mol. Life Sci, vol.62, pp.670-684, 2005.

A. G. Portaliou, K. C. Tsolis, M. S. Loos, V. Zorzini, and A. Economou, Type III secretion: building and operating a remarkable nanomachine, Trends Biochem Sci, vol.41, pp.175-189, 2016.

S. Bakshi, H. Choi, and J. C. Weisshaar, The spatial biology of transcription and translation in rapidly growing Escherichia coli, Front. Microbiol, vol.6, p.636, 2015.

E. B. Sarbeng, A functional DnaK dimer is essential for the efficient interaction with Hsp40 heat shock protein, J. Biol. Chem, vol.290, pp.8849-8862, 2015.

J. Van-durme, Accurate prediction of DnaK-peptide binding via homology modelling and experimental data, PLoS Comput. Biol, vol.5, p.1000475, 2009.

M. P. Castanie-cornet, N. Bruel, and P. Genevaux, Chaperone networking facilitates protein targeting to the bacterial cytoplasmic membrane, Biochim. Biophys. Acta, vol.1843, pp.1442-1456, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00944970

A. Takaya, T. Tomoyasu, H. Matsui, and T. Yamamoto, The DnaK/DnaJ chaperone machinery of Salmonella enterica serovar Typhimurium is essential for invasion of epithelial cells and survival within macrophages, leading to systemic infection, Infect. Immun, vol.72, pp.1364-1373, 2004.

Y. Akeda and J. E. Galan, Chaperone release and unfolding of substrates in type III secretion, Nature, vol.437, pp.911-915, 2005.

J. Enninga, J. Mounier, P. Sansonetti, T. Van-&-nhieu, and G. , Secretion of type III effectors into host cells in real time, Nat. Methods, vol.2, pp.959-965, 2005.

E. Gur, The Escherichia coli DjlA and CbpA proteins can substitute for DnaJ in DnaK-mediated protein disaggregation, J. Bacteriol, vol.186, pp.7236-7242, 2004.

S. A. Teter, Polypeptide flux through bacterial Hsp70: DnaK cooperates with trigger factor in chaperoning nascent chains, Cell, vol.97, pp.755-765, 1999.

P. Genevaux, F. Schwager, C. Georgopoulos, and W. L. Kelley, The djlA gene acts synergistically with dnaJ in promoting Escherichia coli growth, J. Bacteriol, vol.183, pp.5747-5750, 2001.

R. Menard, P. Sansonetti, C. Parsot, and T. Vasselon, Extracellular association and cytoplasmic partitioning of the IpaB and IpaC invasins of S. flexneri, Cell, vol.79, pp.515-525, 1994.

E. J. Stewart, R. Madden, G. Paul, and F. Taddei, Aging and death in an organism that reproduces by morphologically symmetric division, PLoS Biol, vol.3, p.45, 2005.
URL : https://hal.archives-ouvertes.fr/inserm-00080154

A. Ducret, E. M. Quardokus, and Y. V. Brun, MicrobeJ, a tool for high throughput bacterial cell detection and quantitative analysis, Nat. Microbiol, vol.1, p.16077, 2016.

K. Jaqaman, Robust single-particle tracking in live-cell time-lapse sequences, Nat. Methods, vol.5, pp.695-702, 2008.

A. Buchberger, H. Schroder, M. Buttner, A. Valencia, and B. Bukau, A conserved loop in the ATPase domain of the DnaK chaperone is essential for stable binding of GrpE, Nat. Struct. Biol, vol.1, pp.95-101, 1994.

P. Genevaux, In vivo analysis of the overlapping functions of DnaK and trigger factor, EMBO Rep, vol.5, pp.195-200, 2004.

D. Ang and C. Georgopoulos, The heat-shock-regulated grpE gene of Escherichia coli is required for bacterial growth at all temperatures but is dispensable in certain mutant backgrounds, J. Bacteriol, vol.171, pp.2748-2755, 1989.

P. Genevaux, F. Schwager, C. Georgopoulos, and W. L. Kelley, Scanning mutagenesis identifies amino acid residues essential for the in vivo activity of the Escherichia coli DnaJ (Hsp40) J-domain, Genetics, vol.162, pp.1045-1053, 2002.

P. M. Gannon and C. A. Kumamoto, Mutations of the molecular chaperone protein SecB which alter the interaction between SecB and maltose-binding protein, J. Biol. Chem, vol.268, pp.1590-1595, 1993.

R. Menard, P. Sansonetti, and C. Parsot, The secretion of the Shigella flexneri Ipa invasins is activated by epithelial cells and controlled by IpaB and IpaD, EMBO J, vol.13, pp.5293-5302, 1994.

J. Mounier, F. K. Bahrani, and P. J. Sansonetti, Secretion of Shigella flexneri Ipa invasins on contact with epithelial cells and subsequent entry of the bacterium into cells are growth stage dependent, Infect. Immun, vol.65, pp.774-782, 1997.

R. E. Mares, S. G. Melendez-lopez, and M. A. Ramos, Acid-denatured Green Fluorescent Protein (GFP) as model substrate to study the chaperone activity of protein disulfide isomerase, Int J. Mol. Sci, vol.12, pp.4625-4636, 2011.