I. Sobhani, Microbial dysbiosis in colorectal cancer (CRC) patients, PLoS One, vol.6, p.16393, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01190486

E. Vogtmann, Colorectal cancer and the human gut microbiome: Reproducibility with whole-genome shotgun sequencing, PLoS One, vol.11, p.155362, 2016.

W. Chen, F. Liu, Z. Ling, X. Tong, and C. Xiang, Human intestinal lumen and mucosaassociated microbiota in patients with colorectal cancer, PLoS One, vol.7, p.39743, 2012.

S. Wu, A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses, Nat Med, vol.15, pp.1016-1022, 2009.

A. S. Abdulamir, R. R. Hafidh, and F. A. Bakar, Molecular detection, quantification, and isolation of Streptococcus gallolyticus bacteria colonizing colorectal tumors: Inflammationdriven potential of carcinogenesis via IL-1, COX-2, and IL-8, Mol Cancer, vol.9, p.249, 2010.

A. D. Kostic, Genomic analysis identifies association of Fusobacterium with colorectal carcinoma, Genome Res, vol.22, pp.292-298, 2012.

C. L. Sears and W. S. Garrett, Microbes, microbiota, and colon cancer, Cell Host Microbe, vol.15, pp.317-328, 2014.

C. Poyart, G. Quesne, and P. Trieu-cuot, Taxonomic dissection of the Streptococcus bovis group by analysis of manganese-dependent superoxide dismutase gene (sodA) sequences: Reclassification of 'Streptococcus infantarius subsp. coli' as Streptococcus lutetiensis sp. nov. and of Streptococcus bovis biotype 11.2 as Streptococcus pasteurianus sp. nov, Int J Syst Evol Microbiol, vol.52, pp.1247-1255, 2002.

A. Boleij, M. Van-gelder, D. W. Swinkels, and H. Tjalsma, Clinical importance of Streptococcus gallolyticus infection among colorectal cancer patients: Systematic review and meta-analysis, Clin Infect Dis, vol.53, pp.870-878, 2011.

J. Corredoira-sánchez, Association between bacteremia due to Streptococcus gallolyticus subsp. gallolyticus (Streptococcus bovis I) and colorectal neoplasia: A case-control study, Clin Infect Dis, vol.55, pp.491-496, 2012.

H. Zur-hausen, Streptococcus bovis: Causal or incidental involvement in cancer of the colon?, Int J Cancer, vol.119, pp.xi-xii, 2006.

A. S. Abdulamir, R. R. Hafidh, L. K. Mahdi, T. Al-jeboori, and F. Abubaker, Investigation into the controversial association of Streptococcus gallolyticus with colorectal cancer and adenoma, BMC Cancer, vol.9, p.403, 2009.

J. Butt, Association of Streptococcus gallolyticus subspecies gallolyticus with colorectal cancer: Serological evidence, Int J Cancer, vol.138, pp.1670-1679, 2016.

A. Boleij, Bacterial responses to a simulated colon tumor microenvironment, Mol Cell Proteomics, vol.11, pp.851-862, 2012.

A. Gupta, R. Madani, and H. Mukhtar, Streptococcus bovis endocarditis, a silent sign for colonic tumour, Colorectal Dis, vol.12, pp.164-171, 2010.

B. A. Zarkin, The triad of Streptococcus bovis bacteremia, colonic pathology, and liver disease, Ann Surg, vol.211, pp.786-791, 1990.

M. Grinberg, A. J. Mansur, D. O. Ferreira, G. Bellotti, and F. Pileggi, , 1990.

, Arq Bras Cardiol, vol.54, pp.265-269

M. J. Hill, Faecal bile-acids and clostridia in patients with cancer of the large bowel, Lancet, vol.1, pp.535-539, 1975.

R. W. Owen, P. J. Henly, M. H. Thompson, and M. J. Hill, Steroids and cancer: Faecal bile acid screening for early detection of cancer risk, J Steroid Biochem, vol.24, pp.391-394, 1986.

W. K. Luk, Biliary tract infection due to bile-soluble bacteria: An intriguing paradox, Clin Infect Dis, vol.26, pp.1010-1012, 1998.

S. Fre, Notch and Wnt signals cooperatively control cell proliferation and tumorigenesis in the intestine, Proc Natl Acad Sci, vol.106, pp.6309-6314, 2009.

M. Martins, Streptococcus gallolyticus Pil3 pilus is required for adhesion to colonic mucus and for colonization of mouse distal colon, J Infect Dis, vol.212, pp.1646-1655, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-01299764

J. Nissen-meyer, C. Oppegård, P. Rogne, H. S. Haugen, and P. E. Kristiansen, Structure and mode-of-action of the two-peptide (Class-IIb) bacteriocins, Probiotics Antimicrob Proteins, vol.2, pp.52-60, 2010.

H. C. Mantovani, H. Hu, R. W. Worobo, and J. B. Russell, Bovicin HC5, a bacteriocin from Streptococcus bovis HC5, vol.148, pp.3347-3352, 2002.

T. Sato, Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche, Nature, vol.459, pp.262-265, 2009.

S. Middendorp, Adult stem cells in the small intestine are intrinsically programmed with their location-specific function, Stem Cells, vol.32, pp.1083-1091, 2014.

T. Sato, Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium, Gastroenterology, vol.141, pp.1762-1772, 2011.

J. Dumke, T. Vollmer, O. Akkermann, C. Knabbe, and J. Dreier, Case-control study: Determination of potential risk factors for the colonization of healthy volunteers with Streptococcus gallolyticus subsp. gallolyticus, PLoS One, vol.12, p.176515, 2017.

O. J. Sansom, Loss of Apc in vivo immediately perturbs Wnt signaling, differentiation, and migration, Genes Dev, vol.18, pp.1385-1390, 2004.

J. S. Son, Altered interactions between the gut microbiome and colonic mucosa precede polyposis in APCMin/+ mice, PLoS One, vol.10, p.127985, 2015.

S. Dawid, A. M. Roche, and J. N. Weiser, The blp bacteriocins of Streptococcus pneumoniae mediate intraspecies competition both in vitro and in vivo, Infect Immun, vol.75, pp.443-451, 2007.

H. Cao, The secondary bile acid, deoxycholate accelerates intestinal adenoma-adenocarcinoma sequence in Apc (min/+) mice through enhancing Wnt signaling, Fam Cancer, vol.13, pp.563-571, 2014.

S. Yoshimoto, Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome, Nature, vol.499, pp.97-101, 2013.

J. Nissen-meyer, H. Holo, L. S. Håvarstein, K. Sletten, and I. F. Nes, A novel lactococcal bacteriocin whose activity depends on the complementary action of two peptides, J Bacteriol, vol.174, pp.5686-5692, 1992.

H. H. Hauge, J. Nissen-meyer, I. F. Nes, and V. G. Eijsink, Amphiphilic alpha-helices are important structural motifs in the alpha and beta peptides that constitute the bacteriocin lactococcin G-Enhancement of helix formation upon alpha-beta interaction, Eur J Biochem, vol.251, pp.565-572, 1998.

H. H. Hauge, D. Mantzilas, V. G. Eijsink, and J. Nissen-meyer, Membrane-mimicking entities induce structuring of the two-peptide bacteriocins plantaricin E/F and plantaricin J/K, J Bacteriol, vol.181, pp.740-747, 1999.

Y. Murakami, S. Tanabe, and T. Suzuki, High-fat diet-induced intestinal hyperpermeability is associated with increased bile acids in the large intestine of mice, J Food Sci, vol.81, pp.216-222, 2016.

G. M. Barker, Biliary bile acid profiles in patients with familial adenomatous polyposis before and after colectomy, Br J Surg, vol.81, pp.441-444, 1994.

W. Wang, An association between genetic polymorphisms in the ileal sodium-dependent bile acid transporter gene and the risk of colorectal adenomas, Cancer Epidemiol Biomarkers Prev, vol.10, pp.931-936, 2001.

J. Raufman, Slc10a2-null mice uncover colon cancer-promoting actions of endogenous fecal bile acids, Carcinogenesis, vol.36, pp.1193-1200, 2015.

R. Kumar, Streptococcus gallolyticus subsp. gallolyticus promotes colorectal tumor development, PLoS Pathog, vol.13, p.1006440, 2017.

D. H. Reikvam, Depletion of murine intestinal microbiota: Effects on gut mucosa and epithelial gene expression, PLoS One, vol.6, p.17996, 2011.

C. Danne, Molecular characterization of a Streptococcus gallolyticus genomic island encoding a pilus involved in endocarditis, J Infect Dis, vol.204, pp.1960-1970, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01000633

C. Rusniok, Genome sequence of Streptococcus gallolyticus: Insights into its adaptation to the bovine rumen and its ability to cause endocarditis, J Bacteriol, vol.192, pp.2266-2276, 2010.

H. Tettelin, Complete genome sequence of a virulent isolate of Streptococcus pneumoniae, Science, vol.293, pp.498-506, 2001.

T. Lux, Diversity of bacteriocins and activity spectrum in Streptococcus pneumoniae, J Bacteriol, vol.189, pp.7741-7751, 2007.