D. W. Fraser, Legionnaires' disease: description of an epidemic of pneumonia. 19, N Engl J Med, vol.297, issue.22, pp.1189-1197, 1977.

T. J. Rowbotham, Preliminary report on the pathogenicity of Legionella 21 pneumophila for freshwater and soil amoebae, J Clin Pathol, vol.33, issue.12, pp.1179-1183, 1980.

C. Cazalet, Evidence in the Legionella pneumophila genome for exploitation 23 of host cell functions and high genome plasticity, Nat Genet, vol.36, issue.11, pp.1165-1173, 2004.

H. Bruggemann, C. Cazalet, and C. Buchrieser, Adaptation of Legionella 25 pneumophila to the host environment: role of protein secretion, effectors and eukaryotic-26 like proteins, Curr Opin Microbiol, vol.9, issue.1, pp.86-94, 2006.

T. Komano, T. Yoshida, K. Narahara, and N. Furuya, The transfer region of IncI1 28 plasmid R64: similarities between R64 tra and Legionella icm/dot genes, Mol Microbiol, vol.29, issue.6, pp.1348-1359, 2000.

P. Escoll, S. Mondino, R. M. Buchrieser, and C. , Targeting of host organelles by 31 pathogenic bacteria: a sophisticated subversion strategy, Nat Rev Microbiol, vol.14, issue.1, pp.5-19, 2016.

I. Finsel and H. Hilbi, Formation of a pathogen vacuole according to Legionella 33 pneumophila: how to kill one bird with many stones, Cell Microbiol, vol.17, issue.7, pp.935-950, 2015.

T. Nora, M. Lomma, L. Gomez-valero, and C. Buchrieser, Molecular mimicry: an 35 important virulence strategy employed by Legionella pneumophila to subvert host 36 functions, Future Microbiol, vol.4, pp.691-701, 2009.

D. Burstein, Comparative analyses of Legionella species identifies 42 genetic features of strains causing Legionnaires' disease, BMC Genomics, vol.5, issue.7, p.505, 2009.

I. Morozova, Comparative sequence analysis of the icm/dot genes in 1 Legionella, Plasmid, vol.51, issue.2, pp.127-147, 2004.

L. Sanchez-buso, I. Comas, G. Jorques, and F. Gonzalez-candelas, Recombination 3 drives genome evolution in outbreak-related Legionella pneumophila isolates, Nat Genet, vol.4, issue.11, pp.1205-1211, 2014.

D. Burstein, Genomic analysis of 38 Legionella species identifies large and 6 diverse effector repertoires, Nat Genet, vol.48, issue.2, pp.167-175, 2016.

S. J. Joseph, Dynamics of genome change among Legionella species, Sci Rep, vol.8, p.33442, 2016.

C. Cazalet, Analysis of the Legionella longbeachae genome and 10 transcriptome uncovers unique strategies to cause Legionnaires' disease, PLoS Genet, vol.11, issue.2, p.1000851, 2010.

J. Guglielmini, F. De-la-cruz, and E. P. Rocha, Evolution of conjugation and type IV 13 secretion systems, Mol Biol Evol, vol.30, issue.2, pp.315-331, 2013.

J. Bohlin, O. B. Brynildsrud, C. Sekse, and L. Snipen, An evolutionary analysis of 15 genome expansion and pathogenicity in Escherichia coli, BMC Genomics, vol.15, pp.882-898, 2014.

J. Bohlin, C. Sekse, E. Skjerve, and O. Brynildsrud, Positive correlations between 17 genomic %AT and genome size within strains of bacterial species, Environ Microbiol, vol.18, issue.3, pp.278-286, 2014.

M. Rolando, Legionella pneumophila effector RomA uniquely modifies host 20 chromatin to repress gene expression and promote intracellular bacterial replication, Cell 21 Host Microbe, vol.13, issue.4, pp.395-405, 2013.

H. Nagai, J. C. Kagan, X. Zhu, R. A. Kahn, and C. R. Roy, A bacterial guanine nucleotide 23 exchange factor activates ARF on Legionella phagosomes, Science, vol.295, issue.5555, pp.679-682, 2002.

A. L. Pasanen, K. Yli-pietila, P. Pasanen, P. Kalliokoski, and J. Tarhanen, Ergosterol 25 content in various fungal species and biocontaminated building materials, Appl Environ 26 Microbiol, vol.65, issue.1, pp.138-142, 1999.

, 7-Dehydrostigmasterol and ergosterol: the major sterols of 28 an amoeba, J Lipid Res, vol.9, issue.4, pp.405-408, 1968.

S. Thomson, Characterisation of sterol biosynthesis and validation of 30 14alpha-demethylase as a drug target in Acanthamoeba, Sci Rep, vol.7, issue.1, p.8247, 2017.

K. Wennerberg, K. L. Rossman, and C. J. Der, The Ras superfamily at a glance, J Cell, vol.32, pp.843-846, 2005.

D. K. Simanshu, D. V. Nissley, and . Mccormick, RAS Proteins and Their Regulators 34 in Human Disease, Cell, vol.170, issue.1, pp.17-33, 2017.

A. M. Rojas, G. Fuentes, A. Rausell, and A. Valencia, The Ras protein superfamily: 36 evolutionary tree and role of conserved amino acids, J Cell Biol, vol.196, issue.2, pp.189-201, 2012.

J. Colicelli, Human RAS superfamily proteins and related GTPases, Sci STKE, vol.38, issue.250, p.13, 2004.

A. Zade, M. Sengupta, and K. Kondabagil, Extensive in silico analysis of Mimivirus 40 coded Rab GTPase homolog suggests a possible role in virion membrane biogenesis, 41 Front Microbiol, vol.6, p.929, 2015.

W. Li, Two thioredoxin reductases, trxr-1 and trxr-2, have differential 43 physiological roles in Caenorhabditis elegans, Mol Cells, vol.34, issue.2, pp.209-218, 2012.

M. Hiller, C. Lang, W. Michel, and A. Flieger, Secreted phospholipases of the lung 45 pathogen Legionella pneumophila, Int J Med Microbiol, 2017.

M. Aktas, Phosphatidylcholine biosynthesis and its significance in bacteria 47 interacting with eukaryotic cells, Eur J Cell Biol, vol.89, issue.12, pp.888-894, 2010.

O. Geiger, I. M. Lopez-lara, and C. Sohlenkamp, Phosphatidylcholine biosynthesis 49 and function in bacteria, Biochim Biophys Acta, vol.1831, issue.3, pp.503-513, 2013.

D. J. Comerci, S. Altabe, D. De-mendoza, and R. A. Ugalde, Brucella abortus synthesizes 51 phosphatidylcholine from choline provided by the host, J Bacteriol, vol.188, issue.5, pp.1929-1934, 2006.

G. M. Conover, Phosphatidylcholine synthesis is required for optimal function 1 of Legionella pneumophila virulence determinants, Cell Microbiol, vol.10, issue.2, pp.514-528, 2008.

E. Degtyar, T. Zusman, M. Ehrlich, and G. Segal, A Legionella effector acquired from 3 protozoa is involved in sphingolipids metabolism and is targeted to the host cell 4 mitochondria, Cell Microbiol, vol.11, issue.8, pp.1219-1235, 2009.

M. Rolando, Legionella pneumophila S1P-lyase targets host sphingolipid 6 metabolism and restrains autophagy, Proc Natl Acad Sci U S A, vol.113, issue.7, pp.1901-1906, 2016.

C. Moliner, P. E. Fournier, and D. Raoult, Genome analysis of microorganisms living 8 in amoebae reveals a melting pot of evolution, FEMS Microbiol Rev, vol.34, issue.3, pp.281-294, 2010.

G. Segal and H. A. Shuman, Legionella pneumophila utilizes the same genes to 10 multiply within Acanthamoeba castellanii and human macrophages, Infect Immun, vol.11, issue.5, pp.2117-2124, 1999.

G. Dumenil and R. R. Isberg, The Legionella pneumophila IcmR protein exhibits 13 chaperone activity for IcmQ by preventing its participation in high-molecular-weight 14 complexes, Mol Microbiol, vol.40, issue.5, pp.1113-1127, 2001.

M. Feldman, T. Zusman, S. Hagag, and G. Segal, Coevolution between 16 nonhomologous but functionally similar proteins and their conserved partners in the 17, 2005.

, Legionella pathogenesis system, Proc Natl Acad Sci U S A, vol.102, issue.34, pp.12206-12211

Z. Lifshitz, Computational modeling and experimental validation of the 19, 2013.

, Legionella and Coxiella virulence-related type-IVB secretion signal, Proc Natl Acad Sci 20 U S A, vol.110, issue.8, pp.707-715

H. J. Newton, Sel1 repeat protein LpnE is a Legionella pneumophila virulence 22 determinant that influences vacuolar trafficking, Infect Immun, vol.75, issue.12, pp.5575-5585, 2007.

V. L. Yu, Distribution of Legionella species and serogroups isolated by 24 culture in patients with sporadic community-acquired legionellosis: an international 25 collaborative survey, J Infect Dis, vol.186, issue.1, pp.127-128, 2002.

B. Prochazka, Draft Genome Sequence of Legionella jamestowniensis 27 Isolated from a Patient with Chronic Respiratory Disease, Genome announcements, vol.4, issue.5, 2016.