T. Van-den-ende, S. Sharifi, S. M. Van-der-salm, and A. F. Van-rootselaar, Familial cortical myoclonic tremor and epilepsy, an enigmatic disorder: from phenotypes to pathophysiology and genetics. A systematic review. Tremor Other Hyperkinet Mov, vol.8, p.503, 2018.

P. Striano and F. Zara, Autosomal dominant cortical tremor, myoclonus and epilepsy. Epileptic Disord, vol.18, pp.139-144, 2016.

A. F. Van-rootselaar, Familial cortical myoclonic tremor with epilepsy: a single syndromic classification for a group of pedigrees bearing common features, Mov. Disord, vol.20, pp.665-673, 2005.

M. Mikami, Localization of a gene for benign adult familial myoclonic epilepsy to chromosome 8q23.3-q24.1, Am. J. Hum. Genet, vol.65, pp.745-751, 1999.

R. Guerrini, Autosomal dominant cortical myoclonus and epilepsy (ADCME) with complex partial and generalized seizures: a newly recognized epilepsy syndrome with linkage to chromosome 2p11.1-q12.2, Brain, vol.124, pp.2459-2475, 2001.

C. Depienne, Familial cortical myoclonic tremor with epilepsy: the third locus (FCMTE3) maps to 5p, Neurology, vol.74, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00493670

P. Yeetong, A newly identified locus for benign adult familial myoclonic epilepsy on chromosome 3q26.32-3q28, Eur. J. Hum. Genet, vol.21, pp.225-228, 2013.

H. Ishiura, Expansions of intronic TTTCA and TTTTA repeats in benign adult familial myoclonic epilepsy, Nat. Genet, vol.50, pp.581-590, 2018.

X. X. Lei, TTTCA repeat expansion causes familial cortical myoclonic tremor with epilepsy, Eur. J. Neurol, vol.26, pp.513-518, 2019.

Z. Cen, Intronic pentanucleotide TTTCA repeat insertion in the SAMD12 gene causes familial cortical myoclonic tremor with epilepsy type 1, Brain, vol.141, pp.2280-2288, 2018.

S. Zeng, Long-read sequencing identified intronic repeat expansions in SAMD12 from Chinese pedigrees affected with familial cortical myoclonic tremor with epilepsy, J. Med. Genet, vol.56, pp.265-270, 2019.

E. Magnin, Familial cortical myoclonic tremor with epilepsy (FCMTE): Clinical characteristics and exclusion of linkages to 8q and 2p in a large French family, Rev. Neurol, vol.165, pp.812-820, 2009.

A. F. Van-rootselaar, delta-Catenin (CTNND2) missense mutation in familial cortical myoclonic tremor and epilepsy, Neurology, vol.89, pp.2341-2350, 2017.

F. Van-rootselaar, A Dutch family with 'familial cortical tremor with epilepsy, J. Neurol, vol.249, pp.829-834, 2002.

E. Dolzhenko, Detection of long repeat expansions from PCR-free whole-genome sequence data, Genome Res, vol.27, pp.1895-1903, 2017.

C. Saint-martin, Refinement of the 2p11.1-q12.2 locus responsible for cortical tremor associated with epilepsy and exclusion of candidate genes, Neurogenetics, vol.9, pp.69-71, 2008.

R. M. Tankard, Detecting expansions of tandem repeats in cohorts sequenced with short-read sequencing data, Am. J. Hum. Genet, vol.103, pp.858-873, 2018.

H. Dashnow, STRetch: detecting and discovering pathogenic short tandem repeat expansions, Genome Biol, vol.19, p.121, 2018.

K. Doi, Rapid detection of expanded short tandem repeats in personal genomics using hybrid sequencing, Bioinformatics, vol.30, pp.815-822, 2014.

D. Zattas, J. M. Berk, S. G. Kreft, and M. Hochstrasser, A conserved C-terminal element in the yeast Doa10 and human MARCH6 ubiquitin ligases required for selective substrate degradation, J. Biol. Chem, vol.291, pp.12105-12118, 2016.

S. Stefanovic-barrett, MARCH6 and TRC8 facilitate the quality control of cytosolic and tail-anchored proteins, EMBO Rep, vol.19, p.45603, 2018.

M. A. Corbett, Intronic ATTTC repeat expansions in STARD7 in familial adult myoclonic epilepsy linked to chromosome 2, Nat. Commun, 2019.

J. Flores-martin, V. Rena, S. Angeletti, G. M. Panzetta-dutari, and S. Genti-raimondi, The lipid transfer protein StarD7: structure, function, and regulation, Int J. Mol. Sci, vol.14, pp.6170-6186, 2013.

A. I. Seixas, A pentanucleotide ATTTC repeat insertion in the noncoding region of DAB1, mapping to SCA37, causes spinocerebellar ataxia, Am. J. Hum. Genet, vol.101, pp.87-103, 2017.

L. Henden, Identity by descent fine mapping of familial adult myoclonus epilepsy (FAME) to 2p11.2-2q11.2, Hum. Genet, vol.135, pp.1117-1125, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01864740

M. Bahlo, Recent advances in the detection of repeat expansions with short-read next-generation sequencing, vol.7, p.1000, 2018.

L. Jin, Y. Zhong, and R. Chakraborty, The exact numbers of possible microsatellite motifs, Am. J. Hum. Genet, vol.55, pp.582-583, 1994.

D. Kim, TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions, Genome Biol, vol.14, p.36, 2013.

C. Trapnell, L. Pachter, and S. L. Salzberg, TopHat: discovering splice junctions with RNA-Seq, Bioinformatics, vol.25, pp.1105-1111, 2009.

B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg, Ultrafast and memoryefficient alignment of short DNA sequences to the human genome, Genome Biol, vol.10, p.25, 2009.

M. I. Love, W. Huber, and S. Anders, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Genome Biol, vol.15, p.550, 2014.

S. W. Hartley and J. C. Mullikin, Detection and visualization of differential splicing in RNA-Seq data with JunctionSeq, Nucleic Acids Res, vol.44, p.127, 2016.

S. Shen, rMATS: robust and flexible detection of differential alternative splicing from replicate RNA-Seq data, Proc. Natl Acad. Sci. USA, vol.111, pp.5593-5601, 2014.

M. A. Depristo, A framework for variation discovery and genotyping using next-generation DNA sequencing data, Nat. Genet, vol.43, pp.491-498, 2011.

P. Cingolani, A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w 1118 ; iso-2; iso-3, Fly, vol.6, pp.80-92, 2012.

E. P. Nawrocki, Rfam 12.0: updates to the RNA families database, Nucleic Acids Res, vol.43, pp.130-137, 2015.

C. J. Chen, ncPRO-seq: a tool for annotation and profiling of ncRNAs in sRNA-seq data, Bioinformatics, vol.28, pp.3147-3149, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00770015

A. Kozomara and S. Griffiths-jones, miRBase: annotating high confidence microRNAs using deep sequencing data, Nucleic Acids Res, vol.42, pp.68-73, 2014.

L. C. Gandolfo, M. Bahlo, and T. P. Speed, Dating rare mutations from small samples with dense marker data, Genetics, vol.197, pp.1315-1327, 2014.

S. A. Miller, D. D. Dykes, and H. F. Polesky, A simple salting out procedure for extracting DNA from human nucleated cells, Nucleic Acids Res, vol.16, p.1215, 1988.

W. De-coster, S. D'hert, D. T. Schultz, M. Cruts, and C. Van-broeckhoven, NanoPack: visualizing and processing long-read sequencing data, Bioinformatics, vol.34, pp.2666-2669, 2018.

H. Li, Minimap2: pairwise alignment for nucleotide sequences, Bioinformatics, vol.34, pp.3094-3100, 2018.

H. Li, The sequence alignment/map format and SAMtools, Bioinformatics, vol.25, pp.2078-2079, 2009.

C. Stancu and M. , Mapping and phasing of structural variation in patient genomes using nanopore sequencing, Nat. Commun, vol.8, p.1326, 2017.

L. Gong, Picky comprehensively detects high-resolution structural variants in nanopore long reads, Nat. Methods, vol.15, pp.455-460, 2018.

A. De-roeck, Accurate characterization of expanded tandem repeat length and sequence through whole genome long-read sequencing on PromethION, 2018.

P. L. , contribution to initial project design, acquisition, analysis and interpretation of clinical data (Families 1, 2, 5, 12). A-F

T. K. , F. R. , and K. M. , acquisition, analysis, and interpretation of clinical data (Family 4). G.R. and E.H.: acquisition, analysis and/or interpretation of clinical data (Families 7, 8, 10, 11). C.G.: acquisition, analysis and interpretation of clinical data (Family 13). E.LeG. and B.H.: contributions to project conception and/or experimental design. M.A.C. and J.G.: coordination of FAME consortium, formulation of theory and prediction, acquisition, analysis, and interpretation of data (Family 4). C.D.: formulation of theory and prediction, contributions to experimental conception and design, acquisition, analysis and/or interpretation of data, coordination of the overall study

, Caroline Nava 6,8 , Delphine Bouteiller 8 , Sylvie Forlani 8 , Ludmila Jornea 8 , Regina Kubica 1 , Tao Ye 9, Lisanne S. Vijfhuizen, vol.4, p.9

, Institute of Human Genetics, Medical Faculty, vol.55, issue.2, p.25000

T. Azamsterdam, ;. Netherlands, H. Ap-hp, D. Pitié-salpêtrière, and . De-génétique, Sorbonne Université, UMR S 1127, Inserm U1127, vol.6, p.50931

, 11 Genomic Vision, 80 Rue des Meuniers, 92220 Bagneux, France. 12 Department of Human Genetics, p.67200

F. Strasbourg, 20 Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052 VIC, Australia. 21 Department of Medical Biology, p.34295, 2019.

F. Samuel, Laura Canafoglia 28 , Giorgio Casari 29 , Renzo Guerrini 30 , Hiroyuki Ishiura 31, Ingrid E. Scheffer, vol.23

, 34 Austin Health, Australia and Royal Children's Hospital, Murdoch Children's Research Institute and Florey Institute, 35 Pediatric Neurology and Muscular Diseases Unit, vol.32