I. Amit, A. Citri, T. Shay, Y. Lu, M. Katz et al., A module of negative feedback regulators defines growth factor signaling, Nat. Genet, vol.39, pp.503-512, 2007.

R. Arora, M. Rumman, N. Venugopal, H. Gala, and J. Dhawan, Mimicking muscle stem cell quiescence in culture: methods for synchronization in reversible arrest, Muscle Stem Cells: Methods and Protocols, pp.283-302, 2017.

M. J. Barrero, S. Boué, and J. C. Belmonte, Epigenetic mechanisms that regulate cell identity, Cell Stem Cell, vol.7, pp.565-570, 2010.

A. Barski, S. Cuddapah, K. Cui, T. Y. Roh, D. E. Schones et al., High-resolution profiling of histone methylations in the human genome, Cell, vol.129, pp.823-837, 2007.

V. Boonsanay, T. Zhang, A. Georgieva, S. Kostin, H. Qi et al., Regulation of skeletal muscle stem cell quiescence by Suv4-20h1-dependent facultative heterochromatin formation, Cell Stem Cell, vol.18, pp.229-242, 2016.

J. Chen, S. Suo, P. P. Tam, J. J. Han, G. Peng et al., Spatial transcriptomic analysis of cryosectioned tissue samples with Geo-seq, Nat. Protoc, vol.12, pp.566-580, 2017.

M. P. Creyghton, A. W. Cheng, G. G. Welstead, T. Kooistra, B. W. Carey et al.,

, Histone H3K27ac separates active from poised enhancers and predicts developmental state, Proc. Natl. Acad. Sci. USA, vol.107, pp.21931-21936

A. Fanjul, M. I. Dawson, P. D. Hobbs, L. Jong, J. F. Cameron et al., A new class of retinoids with selective inhibition of AP-1 inhibits proliferation, Nature, vol.372, pp.107-111, 1994.

S. Fukada, A. Uezumi, M. Ikemoto, S. Masuda, M. Segawa et al., Molecular signature of quiescent satellite cells in adult skeletal muscle, Stem Cells, vol.25, pp.2448-2459, 2007.

H. R. Herschman, Primary response genes induced by growth factors and tumor promoters, Annu. Rev. Biochem, vol.60, pp.281-319, 1991.

S. Hrvatin, F. Deng, C. W. O'donnell, D. K. Gifford, and D. A. Melton, , 2014.

, MARIS: method for analyzing RNA following intracellular sorting, PLoS ONE, vol.9, p.89459

C. Huang, W. Y. Ma, M. I. Dawson, M. Rincon, R. A. Flavell et al., Blocking activator protein-1 activity, but not activating retinoic acid response element, is required for the antitumor promotion effect of retinoic acid, Proc. Natl. Acad. Sci. USA, vol.94, pp.5826-5830, 1997.

N. H. Jaafar-marican, S. B. Cruz-migoni, and A. Borycki, Asymmetric distribution of primary cilia allocates satellite cells for self-renewal, Stem Cell Reports, vol.6, pp.798-805, 2016.

N. C. Jones, K. J. Tyner, L. Nibarger, H. M. Stanley, D. D. Cornelison et al., The p38a/b MAPK functions as a molecular switch to activate the quiescent satellite cell, J. Cell Biol, vol.169, pp.105-116, 2005.

A. D. King, K. Huang, L. Rubbi, S. Liu, C. Y. Wang et al., Reversible regulation of promoter and enhancer histone landscape by DNA methylation in mouse embryonic stem cells, Cell Rep, vol.17, pp.289-302, 2016.

J. H. Lee, E. R. Daugharthy, J. Scheiman, R. Kalhor, C. Ferrante et al., Fluorescent in situ sequencing (FISSEQ) of RNA for gene expression profiling in intact cells and tissues, Nat. Protoc, vol.10, pp.442-458, 2015.

L. Liu and H. Clevers, Coexistence of quiescent and active adult stem cells in mammals, Science, vol.327, pp.542-545, 2010.

L. Liu, T. H. Cheung, G. W. Charville, and T. A. Rando, Isolation of skeletal muscle stem cells by fluorescence-activated cell sorting, Nat. Protoc, vol.10, pp.1612-1624, 2015.

L. Liu, T. H. Cheung, G. W. Charville, B. M. Hurgo, T. Leavitt et al., Chromatin modifications as determinants of muscle stem cell quiescence and chronological aging, Cell Rep, vol.4, pp.189-204, 2013.

B. Martynoga, J. L. Mateo, B. Zhou, J. Andersen, A. Achimastou et al., , 2013.

, Epigenomic enhancer annotation reveals a key role for NFIX in neural stem cell quiescence, Genes Dev, vol.27, pp.1769-1786

T. B. Miranda and P. A. Jones, DNA methylation: the nuts and bolts of repression, J. Cell. Physiol, vol.213, pp.384-390, 2007.

M. Mollova, K. Bersell, S. Walsh, J. Savla, L. T. Das et al., Cardiomyocyte proliferation contributes to heart growth in young humans, Proc. Natl. Acad. Sci. USA, vol.110, pp.1446-1451, 2013.

D. Montarras, J. Morgan, C. , and C. , Direct isolation of satellite cells for skeletal muscle regeneration, Science, vol.309, pp.2064-2068, 2005.
URL : https://hal.archives-ouvertes.fr/pasteur-00181349

P. Mourikis, R. Sambasivan, D. Castel, P. Rocheteau, V. Bizzarro et al., A critical requirement for notch signaling in maintenance of the quiescent skeletal muscle stem cell state, Stem Cells, vol.30, pp.243-252, 2012.

G. Pallafacchina, S. Franç-ois, B. Regnault, B. Czarny, V. Dive et al., An adult tissue-specific stem cell in its niche: a gene profiling analysis of in vivo quiescent and activated muscle satellite cells, Stem Cell Res, vol.4, pp.77-91, 2010.
URL : https://hal.archives-ouvertes.fr/pasteur-00508865

A. Panné-rec, L. Formicola, V. Besson, G. Marazzi, and D. A. Sassoon, , 2013.

, Defining skeletal muscle resident progenitors and their cell fate potentials, Development, vol.140, pp.2879-2891

G. Peng, S. Suo, J. Chen, W. Chen, C. Liu et al., Spatial transcriptome for the molecular annotation of lineage fates and cell identity in mid-gastrula mouse embryo, Dev. Cell, vol.36, pp.681-697, 2016.

M. Quarta, J. O. Brett, R. Dimarco, A. De-morree, C. Boutet et al., An artificial niche preserves the quiescence of muscle stem cells and enhances their therapeutic efficacy, Nat. Biotechnol, vol.34, pp.752-759, 2016.

P. Rocheteau, B. Gayraud-morel, I. Siegl-cachedenier, M. A. Blasco, and S. Tajbakhsh, A subpopulation of adult skeletal muscle stem cells retains all template DNA strands after cell division, Cell, vol.148, pp.112-125, 2012.

J. T. Rodgers, K. Y. King, J. O. Brett, M. J. Cromie, G. W. Charville et al., mTORC1 controls the adaptive transition of quiescent stem cells from G0 to G(Alert), Nature, vol.510, pp.393-396, 2014.

P. Rojas-ríos, G. Lez-reyes, and A. , Concise review: The plasticity of stem cell niches: a general property behind tissue homeostasis and repair, Stem Cells, vol.32, pp.852-859, 2014.

J. G. Ryall, S. Dell'orso, A. Derfoul, A. Juan, H. Zare et al., The NAD(+)-dependent SIRT1 deacetylase translates a metabolic switch into regulatory epigenetics in skeletal muscle stem cells, Cell Stem Cell, vol.16, pp.171-183, 2015.

H. Sakai, S. Fukuda, M. Nakamura, A. Uezumi, Y. T. Noguchi et al., Notch ligands regulate the muscle stem-like state ex vivo but are not sufficient for retaining regenerative capacity, PLoS One, vol.12, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-01570230

R. Sambasivan, B. Gayraud-morel, G. Dumas, C. Cimper, S. Paisant et al., Distinct regulatory cascades govern extraocular and pharyngeal arch muscle progenitor cell fates, Dev. Cell, vol.16, pp.810-821, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00428975

S. K. Schulze, R. Kanwar, M. Gö-lzenleuchter, T. M. Therneau, and A. S. Beutler, SERE: Single-parameter quality control and sample comparison for RNA-seq, BMC Genomics, vol.13, p.524, 2012.

S. Schwö-rer, F. Becker, C. Feller, A. H. Baig, U. Kö-ber et al., Epigenetic stress responses induce muscle stem-cell ageing by Hoxa9 developmental signals, Nature, vol.540, pp.428-432, 2016.

S. C. Van-den-brink, F. Sage, Á. Vé-rtesy, B. Spanjaard, J. Peterson-maduro et al., Single-cell sequencing reveals dissociation-induced gene expression in tissue subpopulations, Nat. Methods, vol.14, pp.935-936, 2017.

C. T. Van-velthoven, A. De-morree, I. M. Egner, J. O. Brett, and T. A. Rando, Transcriptional profiling of quiescent muscle stem cells in vivo, Cell Rep, vol.21, 1994.

P. S. Zammit, J. P. Golding, Y. Nagata, V. Hudon, T. A. Partridge et al., Muscle satellite cells adopt divergent fates: a mechanism for self-renewal?, J. Cell Biol, vol.166, pp.347-357, 2004.

K. Zhang, J. Sha, and M. L. Harter, Activation of Cdc6 by MyoD is associated with the expansion of quiescent myogenic satellite cells, J. Cell Biol, vol.188, pp.39-48, 2010.