N. Ayllon, V. Naranjo, O. Hajdusek, M. Villar, R. C. Galindo et al., , 2015.

L. C. Bartholomay and K. Michel, Mosquito immunobiology: the intersection of vector health and vector competence, Annu. Rev. Entomol, vol.63, pp.145-167, 2018.

S. Bhatt, P. W. Gething, O. J. Brady, J. P. Messina, A. W. Farlow et al., The global distribution and burden of dengue, Nature, vol.496, pp.504-507, 2013.

W. C. Black, K. E. Bennett, N. Gorrochotegui-escalante, C. V. Barillas-mury, I. Fernandez-salas et al., Flavivirus susceptibility in Aedes aegypti, Arch. Med. Res, vol.33, pp.379-388, 2002.

O. J. Brady, P. W. Gething, S. Bhatt, J. P. Messina, J. S. Brownstein et al., Refining the global spatial limits of dengue virus transmission by evidence-based consensus, PLoS Negl. Trop. Dis, vol.6, p.1760, 2012.

C. L. Campbell, K. M. Keene, D. E. Brackney, K. E. Olson, C. D. Blair et al., Aedes aegypti uses RNA interference in defense against Sindbis virus infection, BMC Microbiol, vol.8, p.47, 2008.

A. A. Caudy, R. F. Ketting, S. M. Hammond, A. M. Denli, A. M. Bathoorn et al., A micrococcal nuclease homologue in RNAi effector complexes, Nature, vol.425, pp.411-414, 2003.

J. Champer, A. Buchman, and O. S. Akbari, Cheating evolution: engineering gene drives to manipulate the fate of wild populations, Nat. Rev. Genet, vol.17, pp.146-159, 2016.

F. A. De-maio, G. Risso, N. G. Iglesias, P. Shah, B. Pozzi et al., The dengue virus NS5 protein intrudes in the cellular spliceosome and modulates splicing, PLoS Pathog, vol.12, p.1005841, 2016.

M. M. Emara and M. A. Brinton, , 2007.

T. Fashe, J. Saarikettu, P. Isomaki, J. Yang, and O. Silvennoinen, Expression analysis of Tudor-SN protein in mouse tissues, Tissue Cell, vol.45, pp.21-31, 2013.

H. A. Flores and S. L. , Controlling vector-borne diseases by releasing modified mosquitoes, Nat. Rev. Microbiol, vol.16, pp.508-518, 2018.

A. Fontaine, D. Jiolle, I. Moltini-conclois, S. Lequime, and L. Lambrechts, , 2016.

A. W. Franz, I. Sanchez-vargas, Z. N. Adelman, C. D. Blair, B. J. Beaty et al., Engineering RNA interference-based resistance to dengue virus type 2 in genetically modified Aedes aegypti, Proc. Natl. Acad. Sci. U S A, vol.103, pp.4198-4203, 2006.

J. E. Fraser, S. M. Rawlinson, S. M. Heaton, and D. A. Jans, Dynamic nucleolar targeting of dengue virus polymerase NS5 in response to extracellular pH, J. Virol, vol.90, pp.5797-5807, 2016.

N. Frei-dit-frey, P. Muller, F. Jammes, D. Kizis, J. Leung et al., The RNA binding protein Tudor-SN is essential for stress tolerance and stabilizes levels of stress-responsive mRNAs encoding secreted proteins in Arabidopsis, Plant Cell, vol.22, pp.1575-1591, 2010.

X. Gao, X. Shi, X. Fu, L. Ge, Y. Zhang et al., Human Tudor staphylococcal nuclease (Tudor-SN) protein modulates the kinetics of AGTR1-3'UTR granule formation, FEBS Lett, vol.588, pp.2154-2161, 2014.

X. Gao, X. Zhao, Y. Zhu, J. He, J. Shao et al., Tudor staphylococcal nuclease, 2012.

, J. Biol. Chem, vol.287, pp.18130-18141

C. Gentile, J. B. Lima, and A. A. Peixoto, aquasalis (Diptera: Culicidae), Mem. Inst. Oswaldo Cruz, vol.100, pp.545-547, 2005.

E. Gould, J. Pettersson, S. Higgs, R. Charrel, and X. De-lamballerie, Emerging arboviruses: why today?, One Health, vol.4, pp.1-13, 2017.

E. Gutierrez-beltran, P. N. Moschou, A. P. Smertenko, and P. V. Bozhkov, Tudor staphylococcal nuclease links formation of stress granules and processing bodies with mRNA catabolism in Arabidopsis, Plant Cell, vol.27, pp.926-943, 2015.

J. Joosten, P. Miesen, E. Taskopru, B. Pennings, P. Jansen et al., The Tudor protein Veneno assembles the ping-pong amplification complex that produces viral piRNAs in Aedes mosquitoes, Nucleic Acids Res, vol.47, pp.2546-2559, 2019.

N. Jupatanakul, S. Sim, and G. Dimopoulos, Aedes aegypti ML and Niemann-Pick type C family members are agonists of dengue virus infection, Dev. Comp. Immunol, vol.43, pp.1-9, 2014.

L. C. Katzelnick, J. M. Fonville, G. D. Gromowski, J. Bustos-arriaga, A. Green et al., Dengue viruses cluster antigenically but not as discrete serotypes, Science, vol.349, pp.1338-1343, 2015.

K. M. Keene, B. D. Foy, I. Sanchez-vargas, B. J. Beaty, C. D. Blair et al., RNA interference acts as a natural antiviral response to O'nyong-nyong virus (Alphavirus; Togaviridae) infection of Anopheles gambiae, Proc. Natl. Acad. Sci. U S A, vol.101, pp.17240-17245, 2004.

H. Y. Ku, V. K. Gangaraju, H. Qi, N. Liu, L. et al., Tudor-SN interacts with piwi antagonistically in regulating spermatogenesis but synergistically in silencing transposons in Drosophila, PLoS Genet, vol.12, p.1005813, 2016.

Y. W. Lam and L. Trinkle-mulcahy, New insights into nucleolar structure and function, 1000.

P. Lasko, Tudor domain, Curr. Biol, vol.20, pp.666-667, 2010.

W. S. Lee, J. A. Webster, E. T. Madzokere, E. B. Stephenson, and L. J. Herrero, , 2019.

, Mosquito antiviral defense mechanisms: a delicate balance between innate immunity and persistent viral infection, Parasit. Vectors, vol.12, p.165

Y. Lei, Y. Huang, H. Zhang, L. Yu, M. Zhang et al., Functional interaction between cellular p100 and the dengue virus 3' UTR, J. Gen. Virol, vol.92, pp.796-806, 2011.

B. Londono-renteria, A. Troupin, M. J. Conway, D. Vesely, M. Ledizet et al., Dengue virus infection of Aedes aegypti requires a putative cysteine rich venom protein, PLoS Pathog, vol.11, p.1005202, 2015.

C. D. Marceau, A. S. Puschnik, K. Majzoub, Y. S. Ooi, S. M. Brewer et al., Genetic dissection of Flaviviridae host factors through genome-scale CRISPR screens, Nature, vol.535, pp.159-163, 2016.

S. H. Merkling, A. W. Bronkhorst, J. M. Kramer, G. J. Overheul, A. Schenck et al., The epigenetic regulator g9a mediates tolerance to RNA virus infection in Drosophila, PLoS Pathog, vol.11, p.1004692, 2015.

S. H. Merkling, G. J. Overheul, J. T. Van-mierlo, D. Arends, C. Gilissen et al., The heat shock response restricts virus infection in Drosophila, Sci. Rep, vol.5, p.12758, 2015.

S. H. Merkling and R. P. Van-rij, Beyond RNAi: antiviral defense strategies in Drosophila and mosquito, J. Insect Physiol, vol.59, pp.159-170, 2013.

J. P. Messina, O. J. Brady, N. Golding, M. U. Kraemer, G. R. Wint et al., The current and future global distribution and population at risk of dengue, Nat. Microbiol, vol.4, pp.1508-1515, 2019.

P. Miesen, J. Joosten, and R. P. Van-rij, PIWIs go viral: arbovirus-derived piRNAs in vector mosquitoes, PLoS Pathog, vol.12, p.1006017, 2016.

C. L. Miller, Stress granules and virus replication, Future Virol, vol.6, pp.1329-1338, 2011.

V. Mongelli and M. C. Saleh, Bugs are not to Be silenced: small RNA pathways and antiviral responses in insects, Annu. Rev. Virol, vol.3, pp.573-589, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01957180

K. M. Myles, M. R. Wiley, E. M. Morazzani, and Z. N. Adelman, Alphavirus-derived small RNAs modulate pathogenesis in disease vector mosquitoes, Proc. Natl. Acad. Sci. U S A, vol.105, 2008.

R. P. Olmo, A. G. Ferreira, T. C. Izidoro-toledo, E. Aguiar, I. J. De-faria et al., Control of dengue virus in the midgut of Aedes aegypti by ectopic expression of the dsRNA-binding protein Loqs2, Nat. Microbiol, vol.3, pp.1385-1393, 2018.

B. Pastorino, M. Bessaud, M. Grandadam, S. Murri, H. J. Tolou et al., Development of a TaqManâ RT-PCR assay without RNA extraction step for the detection and quantification of African Chikungunya viruses, J. Virol. Methods, vol.124, pp.65-71, 2005.

K. Paukku and O. Silvennoinen, STATs as critical mediators of signal transduction and transcription: lessons learned from STAT5, Cytokine Growth Factor Rev, vol.15, pp.435-455, 2004.

V. Raquin and L. Lambrechts, Dengue virus replicates and accumulates in Aedes aegypti salivary glands, Virology, vol.507, pp.75-81, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-01976225

V. Raquin, S. H. Merkling, V. Gausson, I. Moltini-conclois, L. Frangeul et al., Individual co-variation between viral RNA load and gene expression reveals novel host factors during early dengue virus infection of the Aedes aegypti midgut, PLoS Negl. Trop. Dis, vol.11, p.6152, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-01953185

M. I. Salazar, J. H. Richardson, I. Sanchez-vargas, K. E. Olson, and B. J. Beaty, Dengue virus type 2: replication and tropisms in orally infected Aedes aegypti mosquitoes, BMC Microbiol, vol.7, p.9, 2007.

A. Salvetti and A. Greco, Viruses and the nucleolus: the fatal attraction, Biochim. Biophys. Acta, vol.1842, pp.840-847, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00965059

I. Sanchez-vargas, J. C. Scott, B. K. Poole-smith, A. W. Franz, V. Barbosa-solomieu et al., , 2009.

, PLoS Pathog, vol.5, p.1000299

G. Savidis, W. M. Mcdougall, P. Meraner, J. M. Perreira, J. M. Portmann et al., Identification of Zika virus and dengue virus dependency factors using functional genomics, Cell Rep, vol.16, pp.232-246, 2016.

O. M. Sessions, N. J. Barrows, J. A. Souza-neto, T. J. Robinson, C. L. Hershey et al., Discovery of insect and human dengue virus host factors, Nature, vol.458, pp.1047-1050, 2009.

L. T. Sigle and E. A. Mcgraw, Expanding the canon: non-classical mosquito genes at the interface of arboviral infection, Insect Biochem, 2019.

, Mol. Biol, vol.109, pp.72-80

M. L. Simoes, E. P. Caragata, and G. Dimopoulos, Diverse host and restriction factors regulate mosquito-pathogen interactions, Trends Parasitol, vol.34, pp.603-616, 2018.

M. C. Siomi, T. Mannen, and H. Siomi, How does the royal family of Tudor rule the PIWIinteracting RNA pathway?, Genes Dev, vol.24, pp.636-646, 2010.

V. Sirri, S. Urcuqui-inchima, P. Roussel, and D. Hernandez-verdun, Nucleolus: the fascinating nuclear body, Histochem. Cell Biol, vol.129, pp.13-31, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00195457

J. A. Souza-neto, S. Sim, and G. Dimopoulos, An evolutionary conserved function of the JAK-STAT pathway in anti-dengue defense, Proc. Natl. Acad. Sci. U S A, vol.106, pp.17841-17846, 2009.

K. W. Van-cleef, J. T. Van-mierlo, . Van-den, M. Beek, and R. P. Van-rij, Identification of viral suppressors of RNAi by a reporter assay in Drosophila S2 cell culture, Methods Mol. Biol, vol.721, pp.201-213, 2011.

S. C. Weaver, Urbanization and geographic expansion of zoonotic arboviral diseases: mechanisms and potential strategies for prevention, Trends Microbiol, vol.21, pp.360-363, 2013.

F. Weber, V. Wagner, S. B. Rasmussen, R. Hartmann, and S. R. Paludan, Doublestranded RNA is produced by positive-strand RNA viruses and DNA viruses but not in detectable amounts by negative-strand RNA viruses, J. Virol, vol.80, pp.5059-5064, 2006.

L. Yakob, S. Funk, A. Camacho, O. Brady, and W. J. Edmunds, Aedes aegypti control through modernized, integrated vector management, PLoS Curr, vol.9, 2017.

R. Zhang, J. J. Miner, M. J. Gorman, K. Rausch, H. Ramage et al., and 500 ng FLuc-specific and 1 µg GFP-, TSN-or Ago2-specific dsRNA. After incubation for 3 days at 28°C, mosquitoes were homogenized in passive lysis buffer (Promega) using the Precellys 24 grinder (Bertin Technologies) for 30 sec at 6,000 rpm. Samples were transferred to a 96-well plate and centrifugated for 5 min at 12000 x g. Fifty microliters of supernatant were transferred to a new plate, and 50 µL LARII reagent added for the first FLuc measurement. Next, 50 µL Stop&Glow reagent was added before the second measurement of RLuc, Nature, vol.535, pp.164-168, 2007.

-. Mock, DENV-1-infected Aag2 cells were fixed on coverslips using 4% paraformaldehyde (Sigma-Aldrich) for 30 min at room temperature (20-25°C)

, PBS, 0.1% Triton-X100, cells were incubated with mouse anti-dsRNA ?K1 (English & Scientific consulting) and rabbit anti-TSN antibodies diluted 1:500 in 1X PBS, 0.1% Triton-X100, p.2

, Normal Goat Serum for 1 hour at room temperature. Subsequently, cells were washed tree times with 1X PBS with 0.1% Triton X-100 and incubated with goat anti-mouse AlexaFluor 594 and goat anti-rabbit Alexa Fluor 488 diluted 1:1.000 in 1X PBS, 0.1% Triton-X100, 2% Normal Goat Serum (Life technologies)

, Triton X-100, cover slips were mounted on a glass slide in ~10 µL Prolong Gold anti-fade medium containing DAPI (Thermo Fisher) and imaged with a confocal microscope

, Infection with DENV-1 was performed 24 hours after the last transfection. Cells were incubated for 1 hour in L-15 infection medium containing 2% FBS and DENV-1 at a multiplicity of infection of 1. After removal of the infectious inoculum, cells were refreshed with fully supplemented with L-15 medium and incubated at 28°C. Western blotting Aag2 cells were harvested, Aag2 cells were transfected in 24-well plates with 500 ng of dsRNA using Lipofectamine LTX (Invitrogen) along with Plus reagent according to the manufacturer's instructions

. Triton-x100, HRP-conjugated polyclonal goat anti-rabbit IgG (GE Healthcare) diluted 1:5.000 in 1X PBS, 0.1% Triton-X100 for 1 hour at room temperature. Next, the blot was incubated with a primary anti-?-actin murine antibody (Sigma-Aldrich, clone AC-74) at 1:6.000 dilution in blocking buffer, and an HRP-conjugated polyclonal goat anti-mouse IgG (GE Healthcare) diluted at 1:5.000 in 1X PBS, 0.1% Triton-X100 was used as a secondary antibody. Bound antibodies were revealed by chemiluminescence with the SuperSignal West Pico Chemiluminescent Substrate, 1X PBS). After 3 washes with 1X PBS, the blot was incubated with a secondary antibody, 2017.

, Small RNA libraries

, Total RNA from pools of 2 (dsLuc) or 3 (dsTSN) whole mosquitoes was isolated with TRIzol (Invitrogen), p.15

, acrylamide/bisacrylamide (37.5:1), 7 M urea gel as described previously

. Langmead, Libraries were diluted to 4 nM and sequenced using an Illumina NextSeq 500 High Output kit v2 (75 cycles) on an Illumina NextSeq 500 platform. Sequence of fastq files was assessed using graphs generated by 'FastQC, ) on the fastq files created by 'cutadapt, 2009.

. Li, 2009) to produce 'bam' indexed files. To analyze these 'bam' files, different kind of graphs were generated using home-made R scripts with several Bioconductor libraries such as 'Rsamtools' or 'Shortreads

. Raquin, Additionally, statistical significance tests as implanted in GraphPad Prism version 7. P values below 0, Statistical analysis methods have been described previously, p.5, 2017.

M. A. Anderson, T. L. Gross, K. M. Myles, and Z. N. Adelman, Validation of novel promoter sequences derived from two endogenous ubiquitin genes in transgenic Aedes aegypti, Insect Mol Biol, vol.19, pp.441-449, 2010.

M. Caron, G. Grard, C. Paupy, I. M. Mombo, B. Bikie-bi-nso et al., First evidence of simultaneous circulation of three different dengue virus serotypes in Africa, PLoS ONE, vol.8, p.78030, 2013.

T. M. Colpitts, J. Cox, D. L. Vanlandingham, F. M. Feitosa, G. Cheng et al., Alterations in the Aedes aegypti transcriptome during infection with West Nile, dengue and yellow fever viruses, PLoS Pathog, vol.7, p.1002189, 2011.

H. Davarinejad, Quantifications of western blots with Image, 2017.

T. Fansiri, A. Fontaine, L. Diancourt, V. Caro, B. Thaisomboonsuk et al., Genetic mapping of specific interactions between Aedes aegypti mosquitoes and dengue viruses, PLoS Genet, vol.9, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-00854586

A. Fontaine, D. Jiolle, I. Moltini-conclois, S. Lequime, and L. Lambrechts, Excretion of dengue virus RNA by Aedes aegypti allows non-destructive monitoring of viral dissemination in individual mosquitoes, Sci Rep, vol.6, p.24885, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01316118

V. Gausson and M. C. Saleh, Viral small RNA cloning and sequencing, Methods Mol Biol, vol.721, pp.107-122, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-02089924

B. Goic, K. A. Stapleford, L. Frangeul, A. J. Doucet, V. Gausson et al., Virus-derived DNA drives mosquito vector tolerance to arboviral infection, Nat Commun, vol.7, p.12410, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01377742

J. Isoe, S. Kunz, C. Manhart, M. A. Wells, and R. L. Miesfeld, Regulated expression of microinjected DNA in adult Aedes aegypti mosquitoes, Insect Mol Biol, vol.16, pp.83-92, 2007.

B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg, Ultrafast and memory-efficient alignment of short DNA sequences to the human genome, Genome Biol, vol.10, p.25, 2009.

H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan et al., The Sequence Alignment/Map format and SAMtools, Bioinformatics, vol.25, pp.2078-2079, 2009.

M. Martin, Cutadapt removes adapter sequences from high-throughput sequencing reads, EMBnet Journal, vol.17, pp.10-12, 2011.

S. H. Merkling, A. W. Bronkhorst, J. M. Kramer, G. J. Overheul, A. Schenck et al., The epigenetic regulator g9a mediates tolerance to RNA virus infection in Drosophila, PLoS Pathog, vol.11, p.1004692, 2015.

S. H. Merkling, G. J. Overheul, J. T. Van-mierlo, D. Arends, C. Gilissen et al., The heat shock response restricts virus infection in Drosophila, Sci Rep, vol.5, 2015.

V. Raquin, S. H. Merkling, V. Gausson, I. Moltini-conclois, L. Frangeul et al., Individual co-variation between viral RNA load and gene expression reveals novel host factors during early dengue virus infection of the Aedes aegypti midgut, PLoS Negl Trop Dis, vol.11, p.6152, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-01953185

K. A. Stapleford, G. Moratorio, R. Henningsson, R. Chen, S. Matheus et al., Whole-Genome Sequencing Analysis from the Chikungunya Virus Caribbean Outbreak Reveals Novel Evolutionary Genomic Elements, PLoS Negl Trop Dis, vol.10, p.4402, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01634324

K. W. Van-cleef, J. T. Van-mierlo, M. Van-den-beek, and R. P. Van-rij, Identification of viral suppressors of RNAi by a reporter assay in Drosophila S2 cell culture, Methods Mol Biol, vol.721, pp.201-213, 2011.

M. Varjak, K. Maringer, M. Watson, V. B. Sreenu, A. C. Fredericks et al., Aedes aegypti Piwi4 Is a Noncanonical PIWI Protein, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-01573771