G. L. Hobby, K. Meyer, and E. Chaffee, Observations on the mechanism of action of penicillin, Proc. Soc. Exp. Biol. (NY), vol.50, pp.281-285, 1942.

J. W. Bigger, Treatment of staphylococcal infections with penicillin by intermittent sterilisation, Lancet, vol.244, pp.497-500, 1944.

A. Brauner, O. Fridman, O. Gefen, and N. Q. Balaban, Distinguishing between resistance, tolerance and persistence to antibiotic treatment, Nat. Rev. Microbiol, vol.14, pp.320-330, 2016.

J. P. Nataro, M. J. Blaser, and S. Cunningham-rundles, , 2000.

R. A. Fisher, B. Gollan, and S. Helaine, Persistent bacterial infections and persister cells, Nat. Rev. Microbiol, vol.15, pp.453-464, 2017.

J. D. Ernst, Mechanisms of M. tuberculosis immune evasion as challenges to TB vaccine design, Cell Host Microbe, vol.24, pp.34-42, 2018.

M. G. Blango and M. A. Mulvey, Persistence of uropathogenic Escherichia coli in the face of multiple antibiotics, Antimicrob. Agents Chemother, vol.54, pp.1855-1863, 2010.

M. A. Mulvey, J. D. Schilling, and S. J. Hultgren, Establishment of a persistent Escherichia coli reservoir during the acute phase of a bladder infection, Infect. Immun, vol.69, pp.4572-4579, 2001.

K. Lewis, Persister cells, dormancy and infectious disease, Nat. Rev. Microbiol, vol.5, pp.48-56, 2007.

G. A. Jacoby, AmpC ?-lactamases, Clin. Microbiol. Rev, vol.22, pp.161-182, 2009.

D. J. Du, Multidrug efflux pumps: structure, function and regulation, Nat. Rev. Microbiol, vol.16, pp.523-539, 2018.

J. M. Blair, M. A. Webber, A. J. Baylay, D. O. Ogbolu, and L. J. Piddock, Molecular mechanisms of antibiotic resistance, Nat. Rev. Microbiol, vol.13, pp.42-51, 2015.

J. Wolfson, D. Hooper, G. Mchugh, M. Bozza, and M. Swartz, Mutants of Escherichia coli K-12 exhibiting reduced killing by both quinolone and beta-lactam antimicrobial agents, Antimicrob. Agents Chemother, vol.34, pp.1938-1943, 1990.

O. M. El-halfawy and M. A. Valvano, Antimicrobial heteroresistance: an emerging field in need of clarity, Clin. Microbiol. Rev, vol.28, pp.191-207, 2015.

S. Meylan, I. W. Andrews, and J. J. Collins, Targeting antibiotic tolerance, pathogen by pathogen, Cell, vol.172, pp.1228-1238, 2018.

S. Handwerger and A. Tomasz, Antibiotic tolerance among clinical isolates of bacteria, Annu. Rev. Pharmacol. Toxicol, vol.25, pp.349-380, 1985.

M. Ackermann, A functional perspective on phenotypic heterogeneity in microorganisms, Nat. Rev. Microbiol, vol.13, pp.497-508, 2015.

E. Rotem, Regulation of phenotypic variability by a threshold-based mechanism underlies bacterial persistence, Proc. Natl Acad. Sci. USA, vol.107, pp.12541-12546, 2010.

G. R. Huang, D. B. Saakian, and C. K. Hu, Accurate analytic solution of chemical master equations for gene regulation networks in a single cell, Phys. Rev. E, vol.97, p.12412, 2018.

H. S. Moyed and K. P. Bertrand, hipA, a newly recognized gene of Escherichia coli K-12 that affects frequency of persistence after inhibition of murein synthesis, J. Bacteriol, vol.155, pp.768-775, 1983.

B. R. Levin, J. Concepcion-acevedo, and K. I. Udekwu, Persistence: a copacetic and parsimonious hypothesis for the existence of non-inherited resistance to antibiotics, Curr. Opin. Microbiol, vol.21, pp.18-21, 2014.

J. E. Michiels, B. Van-den-bergh, N. Verstraeten, and J. Michiels, Molecular mechanisms and clinical implications of bacterial persistence, Drug Resist. Updat, vol.29, pp.76-89, 2016.

J. L. Radzikowski, H. Schramke, and M. Heinemann, Bacterial persistence from a system-level perspective, Curr. Opin. Biotechnol, vol.46, pp.98-105, 2017.

N. Q. Balaban, J. Merrin, R. Chait, L. Kowalik, and S. Leibler, Bacterial persistence as a phenotypic switch, Science, vol.305, pp.1622-1625, 2004.

A. Joers, N. Kaldalu, and T. Tenson, The frequency of persisters in Escherichia coli reflects the kinetics of awakening from dormancy, J. Bacteriol, vol.192, pp.3379-3384, 2010.

I. Levin-reisman, Automated imaging with ScanLag reveals previously undetectable bacterial growth phenotypes, Nat. Methods, vol.7, pp.737-100, 2010.

A. Gutierrez, Understanding and sensitizing density-dependent persistence to quinolone antibiotics, Mol. Cell, vol.68, pp.1147-1154, 2017.

N. M. Vega, K. R. Allison, A. S. Khalil, and J. J. Collins, Signaling-mediated bacterial persister formation, Nat. Chem. Biol, vol.8, pp.431-433, 2012.

G. Manina, N. Dhar, and J. D. Mckinney, Stress and host immunity amplify Mycobacterium tuberculosis phenotypic heterogeneity and induce nongrowing metabolically active forms, Cell Host Microbe, vol.17, pp.32-46, 2015.

S. Helaine, Internalization of Salmonella by macrophages induces formation of nonreplicating persisters, Science, vol.343, pp.204-208, 2014.

T. Dorr, M. Vulic, and K. Lewis, Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli, PLOS Biol, vol.8, p.1000317, 2010.

H. Eagle and A. Musselman, The rate of bactericidal action of penicillin in vitro as a function of its concentration, and its paradoxically reduced activity at high concentrations against certain organisms, J. Exp. Med, vol.88, pp.99-131, 1948.

B. Audrain, Induction of the Cpx envelope stress pathway contributes to Escherichia coli tolerance to antimicrobial peptides, Appl. Environ. Microbiol, vol.79, pp.7770-7779, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01385433

P. J. Johnson and B. R. Levin, Pharmacodynamics, population dynamics, and the evolution of persistence in Staphylococcus aureus, PLOS Genet, vol.9, p.1003123, 2013.

A. Rosenberg, Antifungal tolerance is a subpopulation effect distinct from resistance and is associated with persistent candidemia, Nat. Commun, vol.9, p.2470, 2018.

K. Kochanowski, L. Morinishi, S. Altschuler, and L. Wu, Drug persistence -from antibiotics to cancer therapies, Curr. Opin. Syst. Biol, vol.10, pp.1-8, 2018.

I. Keren, N. Kaldalu, A. Spoering, Y. Wang, and K. Lewis, Persister cells and tolerance to antimicrobials, FEMS Microbiol. Lett, vol.230, pp.13-18, 2004.

P. C. Taylor, F. D. Schoenknecht, J. C. Sherris, and E. C. Linner, Determination of minimum bactericidal concentrations of oxacillin for Staphylococcusaureus -influence and significance of technical factors, Antimicrob. Agents Chemother, vol.23, pp.142-150, 1983.

W. W. Mok and M. P. Brynildsen, Timing of DNA damage responses impacts persistence to fluoroquinolones, Proc. Natl Acad. Sci. USA, vol.115, pp.6301-6309, 2018.

H. Luidalepp, A. Joers, N. Kaldalu, and T. Tenson, Age of inoculum strongly influences persister frequency and can mask effects of mutations implicated in altered persistence, J. Bacteriol, vol.193, pp.3598-3605, 2011.

H. Eagle and A. D. Musselman, The slow recovery of bacteria from the toxic effects of penicillin, J. Bacteriol, vol.58, pp.475-490, 1949.

P. A. Zur-wiesch, Classic reaction kinetics can explain complex patterns of antibiotic action, Sci. Transl Med, vol.7, pp.287-73, 2015.

Y. Wakamoto, Dynamic persistence of antibiotic-stressed mycobacteria, Science, vol.339, pp.91-95, 2013.

Z. Maglica, E. Ozdemir, and J. D. Mckinney, Single-cell tracking reveals antibiotic-induced changes in mycobacterial energy metabolism, vol.6, pp.2236-2250, 2015.

T. Akerlund, K. Nordstrom, and R. Bernander, Analysis of cell-size and DNA content in exponentially growing and stationary-phase batch cultures of Escherichia-coli, J. Bacteriol, vol.177, pp.6791-6797, 1995.

O. Fridman, A. Goldberg, I. Ronin, N. Shoresh, and N. Q. Balaban, Optimization of lag time underlies antibiotic tolerance in evolved bacterial populations, Nature, vol.513, pp.418-421, 2014.

B. Van-den-bergh, Frequency of antibiotic application drives rapid evolutionary adaptation of Escherichia coli persistence, Nat. Microbiol, vol.1, p.16020, 2016.

I. Levin-reisman, Antibiotic tolerance facilitates the evolution of resistance, Science, vol.355, pp.826-830, 2017.

M. D. Lafleur, Q. Qi, and K. Lewis, Patients with longterm oral carriage harbor high-persister mutants of Candida albicans, Antimicrob. Agents Chemother, vol.54, pp.39-44, 2010.

C. Vulin, N. Leimer, M. Huemer, M. Ackermann, and A. S. Zinkernagel, Prolonged bacterial lag time results in small colony variants that represent a sub-population of persisters, Nat. Commun, vol.9, p.4074, 2018.

B. Claudi, Phenotypic variation of salmonella in host tissues delays eradication by antimicrobial chemotherapy, Cell, vol.158, pp.722-733, 2014.

P. Kaiser, Cecum lymph node dendritic cells harbor slow-growing bacteria phenotypically tolerant to antibiotic treatment, PLOS Biol, vol.12, p.1001793, 2014.

, Reading guide: EUCAST disk diffusion method for antimicrobial susceptibility testing, European Committee on Antimicrobial Susceptibility Testing, 2019.

L. A. Barry, Methods for Determining Bactericidal Activity of Antimicrobial Agents; Approved Guideline, vol.19, pp.1-3, 1999.

J. G. Zhi, C. H. Nightingale, and R. A. Quintiliani, Pharmacodynamic model for the activity of antibiotics against microorganisms under nonsaturable conditions, J. Pharm. Sci, vol.75, pp.1063-1067, 1986.

B. R. Levin and K. I. Udekwu, Population dynamics of antibiotic treatment: a mathematical model and hypotheses for time-kill and continuous-culture experiments, Antimicrob. Agents Chemother, vol.54, pp.3414-3426, 2010.

H. Nicoloff, K. Hjort, B. R. Levin, and D. I. Andersson, The high prevalence of antibiotic heteroresistance in pathogenic bacteria is mainly caused by gene amplification, Nat. Microbiol, vol.4, pp.504-514, 2019.

K. Lewis, Persister cells and the riddle of biofilm survival, Biochemistry Mosc, vol.70, pp.267-274, 2005.

J. H. Yang, S. C. Bening, and J. J. Collins, Antibiotic efficacy -context matters, Curr. Opin. Microbiol, vol.39, pp.73-80, 2017.

S. M. Amato, M. A. Orman, and M. P. Brynildsen, Metabolic control of persister formation in Escherichia coli, Mol. Cell, vol.50, pp.475-487, 2013.