K. Arasaki and C. R. Roy, Legionella pneumophila promotes functional interactions between plasma membrane syntaxins and Sec22b, Traffic, vol.11, pp.587-600, 2010.

G. Ball, J. Demmerle, R. Kaufmann, I. Davis, I. M. Dobbie et al., SIMcheck: a Toolbox for Successful Super-resolution Structured Illumination Microscopy, Sci. Rep, vol.5, p.15915, 2015.

C. L. Birmingham, A. C. Smith, M. A. Bakowski, T. Yoshimori, and J. H. Brumell, Autophagy controls Salmonella infection in response to damage to the Salmonella-containing vacuole, J. Biol. Chem, vol.281, pp.11374-11383, 2006.

D. Brandhorst, D. Zwilling, S. O. Rizzoli, U. Lippert, T. Lang et al., Homotypic fusion of early endosomes: SNAREs do not determine fusion specificity, Proc. Natl. Acad. Sci. USA, vol.103, pp.2701-2706, 2006.

V. Braun, A. Wong, M. Landekic, W. J. Hong, S. Grinstein et al.,

, maturation of the Salmonella-containing vacuole, vol.12, pp.1352-1367

M. V. Bujny, P. A. Ewels, S. Humphrey, N. Attar, M. A. Jepson et al., Sorting nexin-1 defines an early phase of Salmonella-containing vacuole-remodeling during Salmonella infection, J. Cell Sci, vol.121, pp.2027-2036, 2008.

A. E. Carpenter, T. R. Jones, M. R. Lamprecht, C. Clarke, I. H. Kang et al., , 2006.

, CellProfiler: image analysis software for identifying and quantifying cell phenotypes, Genome Biol, vol.7, p.100

P. B. Carter and F. M. Collins, The route of enteric infection in normal mice, J. Exp. Med, vol.139, pp.1189-1203, 1974.

L. Chan-wah-hak, S. Khan, I. Di-meglio, A. L. Law, S. Lucken-ardjomande-hä-sler et al., FBP17 and CIP4 recruit SHIP2 and lamellipodin to prime the plasma membrane for fast endophilin-mediated endocytosis, Nat. Cell Biol, vol.20, pp.1023-1031, 2018.

Y. A. Chen and R. H. Scheller, SNARE-mediated membrane fusion, Nat. Rev. Mol. Cell Biol, vol.2, pp.98-106, 2001.

M. G. Coppolino, C. Kong, M. Mohtashami, A. D. Schreiber, J. H. Brumell et al., Requirement for N-ethylmaleimide-sensitive factor activity at different stages of bacterial invasion and phagocytosis, J. Biol. Chem, vol.276, pp.4772-4780, 2001.

J. Cox and M. Mann, MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification, Nat. Biotechnol, vol.26, pp.1367-1372, 2008.

J. Cox, N. Neuhauser, A. Michalski, R. A. Scheltema, J. V. Olsen et al., Andromeda: a peptide search engine integrated into the MaxQuant environment, J. Proteome Res, vol.10, pp.1794-1805, 2011.

S. Dai, Y. Zhang, T. Weimbs, M. B. Yaffe, and D. Zhou, Bacteriagenerated PtdIns(3)P recruits VAMP8 to facilitate phagocytosis, Traffic, vol.8, pp.1365-1374, 2007.

C. Delevoye, M. Nilges, P. Dehoux, F. Paumet, S. Perrinet et al., SNARE protein mimicry by an intracellular bacterium, 2008.
URL : https://hal.archives-ouvertes.fr/pasteur-00332618

, PLoS Pathog, vol.4, p.1000022

J. Du, A. Z. Reeves, J. A. Klein, D. J. Twedt, L. A. Knodler et al., The type III secretion system apparatus determines the intracellular niche of bacterial pathogens, Proc. Natl. Acad. Sci. USA, vol.113, pp.4794-4799, 2016.

J. Fredlund, J. C. Santos, V. Sté-venin, A. Weiner, P. Latour-lambert et al., , 2018.

T. Galli, A. Zahraoui, V. V. Vaidyanathan, G. Raposo, J. M. Tian et al., A novel tetanus neurotoxin-insensitive vesicle-associated membrane protein in SNARE complexes of the apical plasma membrane of epithelial cells, Mol. Biol. Cell, vol.9, pp.1437-1448, 1998.

G. Portillo, F. Finlay, and B. B. , Salmonella invasion of nonphagocytic cells induces formation of macropinosomes in the host cell, Infect. Immun, vol.62, pp.4641-4645, 1994.

Q. Giai-gianetto, imp4p: Imputation for Proteomics, 2018.

Q. Giai-gianetto, F. Combes, C. Ramus, C. Bruley, Y. Couté et al., Calibration plot for proteomics: A graphical tool to visually check the assumptions underlying FDR control in quantitative experiments, Proteomics, vol.16, pp.29-32, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02191440

T. Hackstadt, M. A. Scidmore-carlson, E. I. Shaw, and E. R. Fischer, , 1999.

, The Chlamydia trachomatis IncA protein is required for homotypic vesicle fusion, Cell. Microbiol, vol.1, pp.119-130

L. D. Hernandez, K. Hueffer, M. R. Wenk, and J. E. Galá-n, Salmonella modulates vesicular traffic by altering phosphoinositide metabolism, Science, vol.304, pp.1805-1807, 2004.

H. Hirling, P. Steiner, C. Chaperon, R. Marsault, R. Regazzi et al., Syntaxin 13 is a developmentally regulated SNARE involved in neurite outgrowth and endosomal trafficking, Eur. J. Neurosci, vol.12, pp.1913-1923, 2000.

R. A. Jani, L. K. Purushothaman, S. Rani, P. Bergam, and S. R. Setty, STX13 regulates cargo delivery from recycling endosomes during melanosome biogenesis, J. Cell Sci, vol.128, pp.3263-3276, 2015.

J. C. Kagan, M. P. Stein, M. Pypaert, and C. R. Roy, Legionella subvert the functions of Rab1 and Sec22b to create a replicative organelle, J. Exp. Med, vol.199, pp.1201-1211, 2004.

L. Kamentsky, T. R. Jones, A. Fraser, M. A. Bray, D. J. Logan et al., Improved structure, function and compatibility for CellProfiler: modular high-throughput image analysis software, Bioinformatics, vol.27, pp.1179-1180, 2011.

D. Khatter, V. B. Raina, D. Dwivedi, A. Sindhwani, S. Bahl et al., The small GTPase Arl8b regulates assembly of the mammalian HOPS complex on lysosomes, J. Cell Sci, vol.128, pp.1746-1761, 2015.

L. A. Knodler, B. B. Finlay, and O. Steele-mortimer, The Salmonella effector protein SopB protects epithelial cells from apoptosis by sustained activation of Akt, J. Biol. Chem, vol.280, pp.9058-9064, 2005.

L. A. Knodler, B. A. Vallance, J. Celli, S. Winfree, B. Hansen et al., Dissemination of invasive Salmonella via bacterial-induced extrusion of mucosal epithelia, Proc. Natl. Acad. Sci. USA, vol.107, pp.17733-17738, 2010.

L. A. Knodler, V. Nair, and O. Steele-mortimer, Quantitative assessment of cytosolic Salmonella in epithelial cells, PLoS One, vol.9, p.84681, 2014.

S. Koike, R. Jahn, S. Kreibich, M. Emmenlauer, J. Fredlund et al., SNAREs define targeting specificity of trafficking vesicles by combinatorial interaction with tethering factors. Nat. Commun, Cell Host Microbe, vol.10, pp.527-537, 1608.

C. Kuijl, N. D. Savage, M. Marsman, A. W. Tuin, L. Janssen et al., Intracellular bacterial growth is controlled by a kinase network around PKB/AKT1, Nature, vol.450, pp.725-730, 2007.

A. Kuster, S. Nola, F. Dingli, B. Vacca, C. Gauchy et al., The Q-soluble N-Ethylmaleimide-sensitive Factor Attachment Protein Receptor (Q-SNARE) SNAP-47 Regulates Trafficking of Selected Vesicle-associated Membrane Proteins (VAMPs), J. Biol. Chem, vol.290, pp.28056-28069, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01266391

M. Lorkowski, A. Felipe-ló-pez, C. A. Danzer, N. Hansmeier, and M. Hensel, Salmonella enterica invasion of polarized epithelial cells is a highly cooperative effort, Infect. Immun, vol.82, pp.2657-2667, 2014.

S. H. Low, S. J. Chapin, T. Weimbs, L. G. Kö-m?-uves, M. K. Bennett et al., Differential localization of syntaxin isoforms in polarized Madin-Darby canine kidney cells, Mol. Biol. Cell, vol.7, pp.2007-2018, 1996.

S. E. Majowicz, J. Musto, E. Scallan, F. J. Angulo, M. Kirk et al., The global burden of nontyphoidal Salmonella gastroenteritis, Clin. Infect. Dis, vol.50, pp.882-889, 2010.

P. Malik-kale, S. Winfree, and O. Steele-mortimer, The bimodal lifestyle of intracellular Salmonella in epithelial cells: replication in the cytosol obscures defects in vacuolar replication, PLoS One, vol.7, p.38732, 2012.

S. Martinez-arca, R. Rudge, M. Vacca, G. Raposo, J. Camonis et al.,

, A dual mechanism controlling the localization and function of exocytic v-SNAREs, Proc. Natl. Acad. Sci. USA, vol.100, pp.9011-9016

H. M. Mcbride, V. Rybin, C. Murphy, A. Giner, R. Teasdale et al., Oligomeric complexes link Rab5 effectors with NSF and drive membrane fusion via interactions between EEA1 and syntaxin 13, Cell, vol.98, pp.377-386, 1999.

D. G. Mcewan, B. Richter, B. Claudi, C. Wigge, P. Wild et al., PLEKHM1 regulates Salmonella-containing vacuole biogenesis and infection, vol.17, pp.58-71, 2015.

K. Mcgourty, T. L. Thurston, S. A. Matthews, L. Pinaud, L. J. Mota et al., Salmonella inhibits retrograde trafficking of mannose-6-phosphate receptors and lysosome function, Science, vol.338, pp.963-967, 2012.

O. Meier, K. Boucke, S. V. Hammer, S. Keller, R. P. Stidwill et al., Adenovirus triggers macropinocytosis and endosomal leakage together with its clathrin-mediated uptake, J. Cell Biol, vol.158, pp.1119-1131, 2002.

J. Mercer and A. Helenius, Virus entry by macropinocytosis, Nat. Cell Biol, vol.11, pp.510-520, 2009.

H. Mi, X. Huang, A. Muruganujan, H. Tang, C. Mills et al., PANTHER version 11: Expanded annotation data from Gene Ontology and Reactome pathways, and data analysis tool enhancements, Nucleic Acids Res, vol.45, pp.183-189, 2017.

S. Mirold, K. Ehrbar, A. Weissm?-uller, R. Prager, H. Tschä-pe et al., Salmonella Host Cell Invasion Emerged by Acquisition of a Mosaic of Separate Genetic Elements, Including Salmonella Pathogenicity Island 1 (SPI1), SPI5, and sopE2, Journal of Bacteriology, vol.183, pp.2348-2358, 2001.

B. Misselwitz, N. Barrett, S. Kreibich, P. Vonaesch, D. Andritschke et al., Near surface swimming of Salmonella Typhimurium explains target-site selection and cooperative invasion, PLoS Pathog, vol.8, p.1002810, 2012.

K. Pattni, M. Jepson, H. Stenmark, and G. Banting, A Ptdlns(3)P-specific probe cycles on and off host cell membranes during Salmonella invasion of mammalian cells, Curr. Biol, vol.11, pp.1636-1642, 2001.

F. Paumet, J. Le-mao, S. Martin, T. Galli, B. David et al.,

, Soluble NSF attachment protein receptors (SNAREs) in RBL-2H3 mast cells: functional role of syntaxin 4 in exocytosis and identification of a vesicleassociated membrane protein 8-containing secretory compartment

, J. Immunol, vol.164, pp.5850-5857

I. Paz, M. Sachse, N. Dupont, J. Mounier, C. Cederfur et al., Galectin-3, a marker for vacuole lysis by invasive pathogens, Cell. Microbiol, vol.12, pp.530-544, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00486248

Y. Perez-riverol, A. Csordas, J. Bai, M. Bernal-llinares, S. Hewapathirana et al., The PRIDE database and related tools and resources in 2019: improving support for quantification data, Nucleic Acids Res, vol.47, pp.442-450, 2019.

A. J. Perrin, X. Jiang, C. L. Birmingham, N. S. So, and J. H. Brumell, Recognition of bacteria in the cytosol of Mammalian cells by the ubiquitin system, Curr. Biol, vol.14, pp.806-811, 2004.

S. Pounds and C. Cheng, Robust estimation of the false discovery rate, Bioinformatics, vol.22, pp.1979-1987, 2006.

R. Prekeris, J. Klumperman, Y. A. Chen, and R. H. Scheller, Syntaxin 13 mediates cycling of plasma membrane proteins via tubulovesicular recycling endosomes, J. Cell Biol, vol.143, pp.957-971, 1998.

E. Ramos-marquè-s, S. Zambrano, A. Tié-rrez, M. E. Bianchi, A. Agresti et al., Single-cell analyses reveal an attenuated NF-kB response in the Salmonella-infected fibroblast, Virulence, vol.5594, pp.719-740, 2016.

G. L. Reed, A. K. Houng, and M. L. Fitzgerald, Human platelets contain SNARE proteins and a Sec1p homologue that interacts with syntaxin 4 and is phosphorylated after thrombin activation: implications for platelet secretion, Blood, vol.93, pp.2617-2626, 1999.

M. E. Ritchie, B. Phipson, D. Wu, Y. Hu, C. W. Law et al., limma powers differential expression analyses for RNA-sequencing and microarray studies, Nucleic Acids Res, vol.43, p.47, 2015.

E. Ronzone and F. Paumet, Two coiled-coil domains of Chlamydia trachomatis IncA affect membrane fusion events during infection, PLoS One, vol.8, p.69769, 2013.

A. Rupper, K. Lee, D. Knecht, and J. Cardelli, Sequential activities of phosphoinositide 3-kinase, PKB/Aakt, and Rab7 during macropinosome formation in Dictyostelium, Mol. Biol. Cell, vol.12, pp.2813-2824, 2001.

J. C. Santos, M. Duchateau, J. Fredlund, A. Weiner, A. Mallet et al., The CO-PII complex and lysosomal VAMP7 determine intracellular Salmonella localization and growth, Cell. Microbiol, vol.17, pp.1699-1720, 2015.

J. Schindelin, I. Arganda-carreras, E. Frise, V. Kaynig, M. Longair et al., Fiji: an open-source platform for biological-image analysis, Nat. Methods, vol.9, pp.676-682, 2012.

M. E. Sellin, A. A. M?-uller, B. Felmy, T. Dolowschiak, M. Diard et al., Epithelium-intrinsic NAIP/NLRC4 inflammasome drives infected enterocyte expulsion to restrict Salmonella replication in the intestinal mucosa, Cell Host Microbe, vol.16, pp.237-248, 2014.

X. Shi, P. Halder, H. Yavuz, R. Jahn, and H. A. Shuman, Direct targeting of membrane fusion by SNARE mimicry: Convergent evolution of Legionella effectors, Proc. Natl. Acad. Sci. USA, vol.113, pp.8807-8812, 2016.

A. Sindhwani, S. B. Arya, H. Kaur, D. Jagga, A. Tuli et al., Salmonella exploits the host endolysosomal tethering factor HOPS complex to promote its intravacuolar replication, PLoS Pathog, vol.13, p.1006700, 2017.

V. Singh, J. Finke-isami, A. C. Hopper-chidlaw, P. Schwerk, A. Thompson et al., Salmonella co-opts host cell chaperone-mediated autophagy for intracellular growth, J. Biol. Chem, vol.292, pp.1847-1864, 2017.

G. K. Smyth, R. Bioconductor, V. J. Gentleman, and . Carey, Limma: Linear Models for microarray data, Bioinformatics and Computational Biology Solutions using, pp.397-420, 2005.

B. Stecher, S. Hapfelmeier, C. M?-uller, M. Kremer, T. Stallmach et al., Flagella and chemotaxis are required for efficient induction of Salmonella enterica serovar Typhimurium colitis in streptomycin-pretreated mice, Infect. Immun, vol.72, pp.4138-4150, 2004.

C. Steinhä-user, U. Heigl, V. Tchikov, J. Schwarz, T. Gutsmann et al., , 2013.

, Lipid-labeling facilitates a novel magnetic isolation procedure to characterize pathogen-containing phagosomes, Traffic, vol.14, pp.321-336

C. Steinhä-user, T. Dallenga, V. Tchikov, U. E. Schaible, S. Sch?-utze et al., Immunomagnetic isolation of pathogen-containing phagosomes and apoptotic blebs from primary phagocytes, Curr. Protoc. Immunol, vol.105, pp.1-26, 2014.

S. Tyanova, T. Temu, and J. Cox, The MaxQuant computational platform for mass spectrometry-based shotgun proteomics, Nat. Protoc, vol.11, pp.2301-2319, 2016.

C. Verderio, D. Pozzi, E. Pravettoni, F. Inverardi, U. Schenk et al., SNAP-25 modulation of calcium dynamics underlies differences in GABAergic and glutamatergic responsiveness to depolarization, Neuron, vol.41, pp.599-610, 2004.

K. Vogel, J. P. Cabaniols, and P. A. Roche, Targeting of SNAP-25 to membranes is mediated by its association with the target SNARE syntaxin, 2000.

, J. Biol. Chem, vol.275, pp.2959-2965

J. Voznica, C. Gardella, I. Belotserkovsky, A. Dufour, J. Enninga et al., Identification of parameters of host cell vulnerability during Salmonella infection by quantitative image amalysis and modeling, Infect. Immun, vol.86, pp.644-661, 2017.

J. Voznica, J. Enninga, and V. Sté-venin, High-throughput microscopic analysis of Salmonella invasion of host cells, Bio Protoc, vol.8, p.3017, 2018.
URL : https://hal.archives-ouvertes.fr/pasteur-01899390

K. G. Watson and D. W. Holden, Dynamics of growth and dissemination of Salmonella in vivo, Cell. Microbiol, vol.12, pp.1389-1397, 2010.

M. M. Weber, N. F. Noriea, L. D. Bauler, J. L. Lam, J. Sager et al., A Functional Core of IncA Is Required for Chlamydia trachomatis Inclusion Fusion, J. Bacteriol, vol.198, pp.1347-1355, 2016.

A. Weiner, N. Mellouk, N. Lopez-montero, Y. Y. Chang, C. Souque et al., Macropinosomes are key players in early Shigella invasion and vacuolar escape in epithelial cells, J. Cell Biol, vol.12, pp.2731-2739, 1989.
URL : https://hal.archives-ouvertes.fr/pasteur-01899441

S. Wieczorek, F. Combes, C. Lazar, Q. Giai-gianetto, L. Gatto et al., DAPAR & ProStaR: software to perform statistical analyses in quantitative discovery proteomics, Bioinformatics, vol.33, pp.135-136, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02191349

T. D. Williams, S. Peak-chew, P. Paschke, and R. R. Kay, 132, jcs224998. the dark for 30 min at room temperature. Subsequently, LysC was added for the first digestion step, J. Cell Sci, 2019.

. Cox, Usual known mass spectrometry contaminants and reversed sequences were also searched. Andromeda searches were performed choosing trypsin as specific enzyme with a maximum number of two missed cleavages. Possible modifications included carbamidomethylation (Cys, fixed), oxidation (Met, variable) and N-terminal acetylation (variable). The mass tolerance in MS was set to 20 parts per million (ppm) for the first search then 6 ppm for the main search and 10 ppm for the MS/MS. Maximum peptide charge was set to 7 and 5 amino acids were required as minimum peptide length. The ''match between runs'' feature was used between conditions with a maximal retention time window of 1 min. One unique peptide to the protein group was required for the protein identification. A false discovery rate (FDR) cutoff of, Then the samples were diluted to 1 M urea with 100 mM Tris pH 7.5, and Sequencing Grade Modified Trypsin was added to the sample at a ratio of 50:1 for 16 h at 37 C. A second incubation, 2008.

. Wieczorek, Large SCVs have semi-spherical to spherical shapes and a lumen can be clearly distinguished between the bacteria and the SCV membrane by standard light microscopy. Statistical analyses of microscopic acquisitions were performed using GraphPad Prism. t tests were used to evaluate the significance of the results, referred like *, **, ***, **** for p values < 0.05, < 0.01, < 0.001, and < 0.0001, respectively. Statistical details of experiments can be found in the figure legends. The statistical analysis of the proteomics data was performed as follows: Three biological replicates were acquired per condition. To highlight significantly differentially abundant proteins between two conditions, differential analyses were conducted through the following data analysis pipeline: (1) deleting the reverse and potential contaminant proteins; (2) keeping only proteins with at least two quantified values in one of the two compared fractions to limit misidentifications and ensure a minimum of replicability; (3) log2-transformation of the remaining LFQ intensities of proteins, QUANTIFICATION AND STATISTICAL ANALYSIS Following image acquisition, fixed samples and time-lapse images were analyzed using Fiji, Imaris or CellProfiler. The number of infected cells was assessed using CellProfiler automatic segmentation. LAMP1 recruitment around intracellular salmonellae was measured using Imaris analyses of 3D confocal images, p.4, 2005.

, The proteins associated with an adjusted p value inferior to an FDR level of 1% have been considered as significantly differentially abundant proteins. Finally, the proteins of interest are therefore the proteins that emerge from this statistical analysis supplemented by those being quantitatively absent from one condition and present in another. The lists and details of the significantly differentially abundant proteins arising from the analyses between the fraction Minf and Mctrl, and between the fraction Minf and Ninf have been deposited to the ProteomeXchange Consortium via the PRIDE (Perez-Riverol et al., 2019) partner repository. To focus on proteins which are not related to DNA/RNA, nucleus, mitochondria or ribosome