D. Prangishvili, D. H. Bamford, P. Forterre, J. Iranzo, E. V. Koonin et al., The enigmatic archaeal 537 virosphere, Nat Rev Microbiol, vol.15, pp.724-739, 2017.

J. H. Munson-mcgee, J. C. Snyder, and M. J. Young, Archaeal Viruses from High-Temperature Environments

, Genes (Basel), vol.9, p.128, 2018.

H. Wang, N. Peng, S. A. Shah, L. Huang, and Q. She, Archaeal extrachromosomal genetic elements. Microbiol 541, Mol Biol Rev, vol.79, pp.117-52, 2015.

N. Dellas, J. C. Snyder, B. Bolduc, and M. J. Young, Archaeal Viruses: Diversity, Replication, and Structure, Annu 543 Rev Virol, vol.1, pp.399-426, 2014.

H. Wang, Z. Guo, H. Feng, Y. Chen, X. Chen et al., Novel Sulfolobus virus with an exceptional capsid 545 architecture, J Virol, vol.92, pp.1727-1744, 2018.

M. Krupovic, E. R. Quemin, D. H. Bamford, P. Forterre, and D. Prangishvili, Unification of the globally distributed 547 spindle-shaped viruses of the Archaea, J Virol, vol.88, pp.2354-2362, 2014.

P. Contursi, S. Fusco, R. Cannio, and Q. She, Molecular biology of fuselloviruses and their satellites

, Extremophiles, vol.18, pp.473-89, 2014.

C. Bath and D. Ml, His1, an archaeal virus of the Fuselloviridae family that infects Haloarcula 551 hispanica, J Virol, vol.72, pp.9392-9397, 1998.

A. Gorlas, E. V. Koonin, N. Bienvenu, D. Prieur, and C. Geslin, TPV1, the first virus isolated from the 553 hyperthermophilic genus Thermococcus, Environ Microbiol, vol.14, pp.503-519, 2012.

C. Geslin, L. Romancer, M. Erauso, G. Gaillard, M. Perrot et al., PAV1, the first virus-like particle 555 isolated from a hyperthermophilic euryarchaeote, J Bacteriol, vol.556, pp.3888-94, 2003.

J. G. Kim, S. J. Kim, V. Cvirkaite-krupovic, W. J. Yu, J. H. Gwak et al., Spindle-shaped viruses 558 infect marine ammonia-oxidizing thaumarchaea, Proc Natl Acad Sci, vol.116, pp.15645-559, 2019.

G. Rice, K. Stedman, J. Snyder, B. Wiedenheft, D. Willits et al., Viruses from extreme thermal 561 environments, Proc Natl Acad Sci U S A, vol.98, pp.13341-13346, 2001.

Y. Liu, S. Ishino, Y. Ishino, G. Pehau-arnaudet, M. Krupovic et al., A novel type of polyhedral 563 viruses infecting hyperthermophilic archaea, J Virol, vol.91, pp.589-606, 2017.

C. Wagner, V. Reddy, F. Asturias, M. Khoshouei, J. E. Johnson et al., Isolation and 565 characterization of Metallosphaera turreted icosahedral virus, a founding member of a new family 566 of archaeal viruses, J Virol, vol.91, pp.925-942, 2017.

F. Wang, Y. Liu, Z. Su, T. Osinski, G. De-oliveira et al., A packing for A-form DNA in an 568 icosahedral virus, Proc Natl Acad Sci, vol.116, pp.22591-22597, 2019.

W. S. Maaty, A. C. Ortmann, M. Dlakic, K. Schulstad, J. K. Hilmer et al., Characterization of the 570 archaeal thermophile Sulfolobus turreted icosahedral virus validates an evolutionary link among 571 double-stranded DNA viruses from all domains of life, Journal of virology, vol.80, pp.7625-7660, 2006.

Y. Liu, T. Osinski, F. Wang, M. Krupovic, S. Schouten et al., Structural conservation in a 573 membrane-enveloped filamentous virus infecting a hyperthermophilic acidophile, Nat Commun, vol.574, p.3360, 2018.

R. Hochstein, D. Bollschweiler, S. Dharmavaram, N. G. Lintner, J. M. Plitzko et al., Structural 576 studies of Acidianus tailed spindle virus reveal a structural paradigm used in the assembly of 577 spindle-shaped viruses, Proc Natl Acad Sci U S A, vol.115, pp.2120-2125, 2018.

D. Ptchelkine, A. Gillum, T. Mochizuki, S. Lucas-staat, Y. Liu et al., Unique architecture of 579 thermophilic archaeal virus APBV1 and its genome packaging, Nat Commun, vol.8, p.1436, 2017.

P. Kasson, F. Dimaio, X. Yu, S. Lucas-staat, M. Krupovic et al., Model for a novel membrane 581 envelope in a filamentous hyperthermophilic virus, Elife, vol.6, p.26268, 2017.

F. Dimaio, X. Yu, E. Rensen, M. Krupovic, D. Prangishvili et al., A virus that infects a 583 hyperthermophile encapsidates A-form DNA, Science, vol.348, pp.914-921, 2015.

C. Hong, M. K. Pietila, C. J. Fu, M. F. Schmid, D. H. Bamford et al., Lemon-shaped halo archaeal virus His1 585 with uniform tail but variable capsid structure, Proc Natl Acad Sci U S A, vol.112, pp.2449-54, 2015.

K. M. Stedman, M. Deyoung, M. Saha, M. B. Sherman, and M. C. Morais, Structural insights into the architecture 587 of the hyperthermophilic Fusellovirus SSV1, Virology, vol.474, pp.105-114, 2015.

M. Krupovic, V. Cvirkaite-krupovic, J. Iranzo, D. Prangishvili, and E. V. Koonin, Viruses of archaea: Structural, 589 functional, environmental and evolutionary genomics, Virus Res, vol.244, pp.181-193, 2018.

J. Iranzo, M. Krupovic, and E. V. Koonin, The Double-Stranded DNA Virosphere as a Modular Hierarchical 591 Network of Gene Sharing, MBio, vol.7, pp.978-994, 2016.

J. Iranzo, E. V. Koonin, D. Prangishvili, and M. Krupovic, Bipartite Network Analysis of the Archaeal 593 Virosphere: Evolutionary Connections between Viruses and Capsidless Mobile Elements, J Virol, vol.594, pp.11043-11055, 2016.

E. R. Quemin, P. Chlanda, M. Sachse, P. Forterre, D. Prangishvili et al., Eukaryotic-like virus 596 budding in Archaea, mBio, vol.7, pp.1439-1455, 2016.

A. Bize, E. A. Karlsson, K. Ekefjard, T. E. Quax, M. Pina et al., A unique virus release mechanism 598 in the Archaea, Proc Natl Acad Sci, vol.106, pp.11306-11317, 2009.

S. K. Brumfield, A. C. Ortmann, V. Ruigrok, P. Suci, T. Douglas et al., Particle assembly and 600 ultrastructural features associated with replication of the lytic archaeal virus sulfolobus turreted 601 icosahedral virus, J Virol, vol.83, pp.5964-70, 2009.

T. E. Quax, M. Krupovic, S. Lucas, P. Forterre, and D. Prangishvili, The Sulfolobus rod-shaped virus 2 encodes a 603 prominent structural component of the unique virion release system in Archaea, Virology, vol.604, pp.1-4, 2010.

J. C. Snyder, S. K. Brumfield, N. Peng, Q. She, and M. J. Young, Sulfolobus turreted icosahedral virus c92 protein 606 responsible for the formation of pyramid-like cellular lysis structures, Journal of virology, vol.607, pp.6287-92, 2011.

M. Krupovic, M. F. White, P. Forterre, and D. Prangishvili, Postcards from the edge: structural genomics of 609 archaeal viruses, Adv Virus Res, vol.82, pp.33-62, 2012.

E. R. Quemin, M. K. Pietila, H. M. Oksanen, P. Forterre, W. I. Rijpstra et al., Sulfolobus spindle-611 shaped virus 1 contains glycosylated capsid proteins, a cellular chromatin protein, and host-612 derived lipids, J Virol, vol.89, pp.11681-91, 2015.

E. I. Rensen, T. Mochizuki, E. Quemin, S. Schouten, M. Krupovic et al., A virus of 614 hyperthermophilic archaea with a unique architecture among DNA viruses, Proc Natl Acad Sci, vol.113, pp.2478-83, 2016.

F. Wang, V. Cvirkaite-krupovic, M. Kreutzberger, Z. Su, G. De-oliveira et al., An 617 extensively glycosylated archaeal pilus survives extreme conditions, Nature microbiology, vol.618, pp.1401-1410, 2019.

J. Iranzo, A. E. Lobkovsky, Y. I. Wolf, and E. V. Koonin, Evolutionary dynamics of the prokaryotic adaptive 620 immunity system CRISPR-Cas in an explicit ecological context, J Bacteriol, vol.195, pp.3834-3878, 2013.

J. S. Athukoralage, S. A. Mcmahon, C. Zhang, S. Grüschow, S. Graham et al., A viral ring 622 nuclease anti-CRISPR subverts type III CRISPR immunity, Nature, vol.577, pp.572-575, 2020.

Y. Bhoobalan-chitty, T. B. Johansen, D. Cianni, N. Peng, and X. , Inhibition of Type III CRISPR-Cas Immunity by 624 an Archaeal Virus-Encoded Anti-CRISPR, Protein. Cell, vol.179, pp.448-458, 2019.

F. He, Y. Bhoobalan-chitty, L. B. Van, A. L. Kjeldsen, M. Dedola et al., Anti-CRISPR proteins 626 encoded by archaeal lytic viruses inhibit subtype I-D immunity, Nat Microbiol, vol.3, pp.461-469, 2018.

S. Hurwitz and J. B. Lowenstern, Dynamics of the Yellowstone hydrothermal system, Rev Geophys, vol.628, pp.375-411, 2014.

J. C. Snyder, M. M. Bateson, M. Lavin, and M. J. Young, Use of cellular CRISPR (clusters of regularly interspaced 630 short palindromic repeats) spacer-based microarrays for detection of viruses in environmental 631 samples, Appl Environ Microbiol, vol.76, pp.7251-7259, 2010.

B. Bolduc, J. F. Wirth, A. Mazurie, and M. J. Young, Viral assemblage composition in Yellowstone acidic hot 633 springs assessed by network analysis, ISME J, vol.9, pp.2162-77, 2015.

M. Piochi, C. Kilburn, D. Vito, M. A. Mormone, A. Tramelli et al., The volcanic and 635 geothermally active Campi Flegrei caldera: an integrated multidisciplinary image of its buried 636 structure, Int Journ Earth Sci, vol.103, pp.401-421, 2014.

M. Piochi, A. Mormone, G. Balassone, H. Strauss, C. Troise et al., Native sulfur, sulfates and 638 sulfides from the active Campi Flegrei volcano (southern Italy): Genetic environments and 639 degassing dynamics revealed by mineralogy and isotope geochemistry, J Volcanol Geotherm Res, vol.640, pp.180-193, 2015.

M. Piochi, A. Mormone, H. Strauss, and G. Balassone, The acid sulfate zone and the mineral alteration styles 642 of the Roman Puteoli (Neapolitan area, Italy): clues on fluid fracturing progression at the Campi 643 Flegrei volcano, Solid Earth, vol.10, pp.1809-1831, 2019.

P. Menzel, S. R. Gudbergsdottir, A. G. Rike, L. Lin, Q. Zhang et al., Comparative Metagenomics 645 of Eight Geographically Remote Terrestrial Hot Springs, Microb Ecol, vol.70, pp.411-435, 2015.

C. Ciniglia, H. S. Yoon, A. Pollio, G. Pinto, and D. Bhattacharya, Hidden biodiversity of the extremophilic 647 Cyanidiales red algae, Mol Ecol, vol.13, pp.1827-1865, 2004.

S. R. Gudbergsdóttir, P. Menzel, A. Krogh, M. Young, and X. Peng, Novel viral genomes identified from six 649 metagenomes reveal wide distribution of archaeal viruses and high viral diversity in terrestrial hot 650 springs, Environ Microbiol, vol.18, pp.863-74, 2016.

M. Häring, X. Peng, K. Brugger, R. R. Stetter, K. O. Garrett et al., Morphology and genome 652 organization of the virus PSV of the hyperthermophilic archaeal genera Pyrobaculum and 653 Thermoproteus: a novel virus family, the Globuloviridae, Virology, vol.323, pp.233-275, 2004.

W. Zillig, A. Kletzin, C. Schleper, I. Holz, D. Janekovic et al., Screening for Sulfolobales, their 655 Plasmids and their Viruses in Icelandic Solfataras, Syst Appl Microbiol, vol.16, pp.609-628, 1993.

E. R. Quemin, S. Lucas, B. Daum, T. E. Quax, W. Kuhlbrandt et al., First insights into the entry 657 process of hyperthermophilic archaeal viruses, J Virol, vol.87, pp.13379-85, 2013.

D. Prangishvili, M. Krupovic, . Ictv-report, and . Consortium, ICTV Virus Taxonomy Profile: Globuloviridae, J 659 Gen Virol, vol.99, pp.1357-1358, 2018.
URL : https://hal.archives-ouvertes.fr/pasteur-01977328

D. G. Ahn, S. I. Kim, J. K. Rhee, K. P. Kim, J. G. Pan et al., TTSV1, a new virus-like particle isolated from the 661 hyperthermophilic crenarchaeote Thermoproteus tenax, Virology, vol.351, pp.280-90, 2006.

D. Prangishvili, E. Rensen, T. Mochizuki, M. Krupovic, . Ictv-report et al., ICTV Virus Taxonomy 663 Profile: Tristromaviridae, J Gen Virol, vol.100, pp.135-136, 2019.

H. Neumann, V. Schwass, C. Eckerskorn, and W. Zillig, Identification and characterization of the genes 665 encoding three structural proteins of the Thermoproteus tenax virus TTV1, Mol Gen Genet, vol.666, pp.105-115, 1989.

D. Prangishvili, E. V. Koonin, and M. Krupovic, Genomics and biology of Rudiviruses, a model for the study of 668 virus-host interactions in Archaea, Biochem Soc Trans, vol.41, pp.443-50, 2013.

M. A. Bautista, J. A. Black, N. D. Youngblut, and R. J. Whitaker, Differentiation and Structure in Sulfolobus 670 islandicus Rod-Shaped Virus Populations, Viruses, vol.9, p.120, 2017.

J. P. Meier-kolthoff and M. Goker, VICTOR: genome-based phylogeny and classification of prokaryotic 672 viruses, Bioinformatics, vol.33, pp.3396-3404, 2017.

Y. Liu, D. Brandt, S. Ishino, Y. Ishino, E. V. Koonin et al., New archaeal viruses discovered by 674 metagenomic analysis of viral communities in enrichment cultures, Environ Microbiol, vol.675, pp.2002-2014, 2019.

S. Roux, M. Krupovic, R. A. Daly, A. L. Borges, S. Nayfach et al., Cryptic inoviruses revealed as 677 pervasive in bacteria and archaea across Earth's biomes, Nat Microbiol, vol.4, pp.1895-1906, 2019.

S. Roux, E. M. Adriaenssens, B. E. Dutilh, E. V. Koonin, A. M. Kropinski et al., Minimum 679 Information about an Uncultivated Virus Genome (MIUViG), Nat Biotechnol, vol.37, pp.29-37, 2019.

R. A. Edwards, K. Mcnair, K. Faust, J. Raes, and B. E. Dutilh, Computational approaches to predict 681 bacteriophage-host relationships, FEMS Microbiol Rev, vol.40, pp.258-72, 2016.

C. Pourcel, M. Touchon, N. Villeriot, J. P. Vernadet, D. Couvin et al., CRISPRCasdb a 683 successor of CRISPRdb containing CRISPR arrays and cas genes from complete genome sequences, 684 and tools to download and query lists of repeats and spacers, Nucleic Acids Res, vol.48, pp.535-685, 2020.

J. Ågren, A. Sundström, T. Håfström, and B. Segerman, Gegenees: fragmented alignment of multiple 687 genomes for determining phylogenomic distances and genetic signatures unique for specified 688 target groups, PLoS One, vol.7, p.39107, 2012.

P. Simmonds, M. J. Adams, M. Benko, M. Breitbart, J. R. Brister et al., Consensus statement: 690 Virus taxonomy in the age of metagenomics, Nat Rev Microbiol, vol.15, pp.161-168, 2017.

M. Häring, R. Rachel, X. Peng, R. A. Garrett, and D. Prangishvili, Viral diversity in hot springs of Pozzuoli, Italy, 692 and characterization of a unique archaeal virus, Acidianus bottle-shaped virus, from a new family, 693 the Ampullaviridae, J Virol, vol.79, pp.9904-9915, 2005.

G. Vestergaard, M. Haring, X. Peng, R. R. Garrett, R. A. Prangishvili et al., A novel rudivirus, ARV1, of the 695 hyperthermophilic archaeal genus Acidianus, Virology, vol.336, pp.83-92, 2005.

D. Prangishvili, G. Vestergaard, M. Haring, R. Aramayo, T. Basta et al., Structural and genomic 697 properties of the hyperthermophilic archaeal virus ATV with an extracellular stage of the 698 reproductive cycle, J Mol Biol, vol.359, pp.1203-1219, 2006.

G. Vestergaard, R. Aramayo, T. Basta, M. Haring, X. Peng et al., Structure of the acidianus 700 filamentous virus 3 and comparative genomics of related archaeal lipothrixviruses, Journal of 701 virology, vol.82, pp.371-81, 2008.

H. P. Arnold, U. Ziese, and W. Zillig, SNDV, a novel virus of the extremely thermophilic and acidophilic 703 archaeon Sulfolobus, Virology, vol.272, pp.409-425, 2000.

T. Mochizuki, Y. Sako, and D. Prangishvili, Provirus induction in hyperthermophilic archaea: 705 characterization of Aeropyrum pernix spindle-shaped virus 1 and Aeropyrum pernix ovoid virus 1. 706, J Bacteriol, vol.193, pp.5412-5421, 2011.

B. Wiedenheft, K. Stedman, F. Roberto, D. Willits, A. K. Gleske et al., Comparative genomic 708 analysis of hyperthermophilic archaeal Fuselloviridae viruses, J Virol, vol.78, pp.1954-61, 2004.

M. D. Pauly, M. A. Bautista, J. A. Black, and R. J. Whitaker, Diversified local CRISPR-Cas immunity to viruses of 710 Sulfolobus islandicus, Philos Trans R Soc Lond B Biol Sci, vol.374, 2019.

N. L. Held and R. J. Whitaker, Viral biogeography revealed by signatures in Sulfolobus islandicus genomes

, Environ Microbiol, vol.11, pp.457-66, 2009.

K. M. Stedman, A. Clore, and Y. Combet-blanc, Biogeographical diversity of archaeal viruses, p.714, 2006.

N. A. Logan, H. M. Lappin-scott, and P. Oyston, Prokaryotic Diversity: Mechanisms and 715 Significance, pp.131-143

J. C. Snyder, B. Wiedenheft, M. Lavin, F. F. Roberto, J. Spuhler et al., Virus movement 717 maintains local virus population diversity, Proc Natl Acad Sci, vol.104, pp.19102-19109, 2007.

S. Medvedeva, Y. Liu, E. V. Koonin, K. Severinov, D. Prangishvili et al., Virus-borne mini-CRISPR 719 arrays are involved in interviral conflicts, Nat Commun, vol.10, p.5204, 2019.

N. S. Atanasova, E. Roine, A. Oren, D. H. Bamford, and H. M. Oksanen, Global network of specific virus-host 721 interactions in hypersaline environments, Environ Microbiol, vol.14, pp.426-466, 2012.

N. S. Atanasova, D. H. Bamford, and H. M. Oksanen, Virus-host interplay in high salt environments, Environ 723 Microbiol Rep, vol.8, pp.431-475, 2016.

. Laidler, J. A. Shugart, S. L. Cady, K. S. Bahjat, and K. M. Stedman, Reversible inactivation and desiccation 725 tolerance of silicified viruses, J Virol, vol.87, pp.13927-13936, 2013.

D. Sordi, L. Khanna, V. Debarbieux, and L. , The Gut Microbiota Facilitates Drifts in the Genetic Diversity and 727 Infectivity of Bacterial Viruses, Cell Host Microbe, vol.22, pp.801-808, 2017.

B. G. Paul, S. C. Bagby, E. Czornyj, D. Arambula, S. Handa et al., Targeted diversity generation by 729 intraterrestrial archaea and archaeal viruses, Nat Commun, vol.6, p.6585, 2015.

R. Klein, N. Rossler, M. Iro, H. Scholz, and A. Witte, Haloarchaeal myovirus phiCh1 harbours a phase 731 variation system for the production of protein variants with distinct cell surface adhesion 732 specificities, Mol Microbiol, vol.83, pp.137-50, 2012.

S. Roux, J. R. Brum, B. E. Dutilh, S. Sunagawa, M. B. Duhaime et al., Ecogenomics and potential 734 biogeochemical impacts of globally abundant ocean viruses, Nature, vol.537, pp.689-693, 2016.

, Figure 1. Electron micrographs of the VLPs observed in enrichment cultures. a Fuselloviruses 738 (tailless lemon-shaped virions). b Bicaudaviruses (large, tailed lemon-shaped virions, p.739

, e Lipothrixviruses 740 (filamentous virions). f Globuloviruses (spherical enveloped virions). g Tristromaviruses 741 (filamentous enveloped virions). h Guttaviruses (droplet-shaped virions). Samples were 742 negatively stained with 2% (wt/vol) uranyl acetate, Ampullaviruses (bottle-shaped virions). d Rudiviruses (rod-shaped virions)

, Figure 2. Electron micrographs of the five isolated viruses. a Metallosphaera rod-shaped virus 1

A. , Saccharolobus solfataricus rod-shaped virus 1. d Pyrobaculum 746 filamentous virus 2. e Pyrobaculum spherical virus 2. Samples were negatively stained with 2% 747 (wt/vol) uranyl acetate. Scale bars: 500 nm

, The open 750 reading frames (ORFs) are represented by arrows that indicate the direction of transcription. The 751 terminal inverted repeats (TIRs) are denoted by black bars at the ends of the genomes. Genes 752 encoding the major structural proteins are shown in dark grey. The functional annotations of the 753 predicted ORFs are depicted above/below the corresponding ORF. Homologous ORFs and ORF 754 fragments are connected by shading in grayscale based on the level of amino acid sequence 755 identity between the homologous regions, VP

, The open 759 reading frames (ORFs) are represented by arrows that indicate the direction of transcription. The 760 terminal inverted repeats (TIRs) are denoted by black bars at the ends of the genomes. Genes 761 encoding the major structural proteins are shown in dark grey, whereas the four-gene block 762 discussed in the text is shown in black. The functional annotations of the predicted ORFs are 763 depicted above/below the corresponding ORFs. Homologous genes are connected by shading in 764 grayscale based on the level of amino acid sequence identity

. Tp/vp,