R. Gao and A. M. Stock, Biological insights from structures of twocomponent proteins, Annu. Rev. Microbiol, vol.63, pp.133-154, 2009.

R. B. Bourret, Receiver domain structure and function in response regulator proteins, Curr. Opin. Microbiol, vol.13, pp.142-149, 2010.

R. Gao and A. M. Stock, Molecular strategies for phosphorylationmediated regulation of response regulator activity, Curr. Opin. Microbiol, vol.13, pp.160-167, 2010.

B. F. Volkman, D. Lipson, D. E. Wemmer, and D. Kern, Two-state allosteric behavior in a single-domain signaling protein, Science, vol.291, pp.2429-2433, 2001.

I. Baikalov, I. Schröder, M. Kaczor-grzeskowiak, K. Grzeskowiak, R. P. Gunsalus et al., Structure of the Escherichia coli response regulator NarL, Biochemistry, vol.35, pp.11053-11061, 1996.

A. M. Eldridge, H. S. Kang, J. E. Gunsalus, R. Dahlquist, and F. W. , Effect of phosphorylation on the interdomain interaction of the response regulator, NarL. Biochemistry, vol.41, pp.15173-15180, 2002.

C. M. Barbieri, T. R. Mack, V. L. Robinson, M. T. Miller, and A. M. Stock, Regulation of response regulator autophosphorylation through interdomain contacts, J. Biol. Chem, vol.285, pp.32325-32335, 2010.

T. R. Mack, R. Gao, and A. M. Stock, Probing the roles of the two different dimers mediated by the receiver domain of the response regulator PhoB, J. Mol. Biol, vol.389, pp.349-364, 2009.

C. M. Barbieri, T. Wu, and A. M. Stock, Comprehensive analysis of OmpR phosphorylation, dimerization, and DNA binding supports a canonical model for activation, J. Mol. Biol, vol.425, pp.1612-1626, 2013.

P. G. Leonard, D. Golemi-kotra, and A. M. Stock, Phosphorylationdependent conformational changes and domain rearrangements in Staphylococcus aureus VraR activation, Proc. Natl. Acad. Sci. U. S. A, vol.110, pp.8525-8530, 2013.

A. K. Park, J. H. Moon, J. S. Oh, K. S. Lee, and Y. M. Chi, Crystal structure of the response regulator spr1814 from Streptococcus pneumoniae reveals unique interdomain contacts among NarL family proteins, Biochem. Biophys. Res. Commun, vol.434, pp.65-69, 2013.

P. Casino, V. Rubio, and M. A. , Structural insight into partner specificity and phosphoryl transfer in two-component signal transduction, Cell, vol.139, pp.325-336, 2009.

D. Albanesi, M. Martín, F. Trajtenberg, M. C. Mansilla, A. Haouz et al., Structural plasticity and catalysis regulation of a thermosensor histidine kinase, Proc. Natl. Acad. Sci. U. S. A, vol.106, pp.16185-16190, 2009.

F. Trajtenberg, M. Graña, N. Ruétalo, H. Botti, and A. Buschiazzo, Structural and enzymatic insights into the ATP binding and autophosphorylation mechanism of a sensor histidine kinase, J. Biol. Chem, vol.285, pp.24892-24903, 2010.
URL : https://hal.archives-ouvertes.fr/pasteur-00508936

P. Casino, L. Miguel-romero, and M. A. , Visualizing autophosphorylation in histidine kinases, Nat. Commun, vol.5, p.3258, 2014.

A. E. Mechaly, N. Sassoon, J. M. Betton, and P. M. Alzari, Segmental helical motions and dynamical asymmetry modulate histidine kinase autophosphorylation, PLoS Biol, vol.12, p.1001776, 2014.

C. H. Bell, S. L. Porter, A. Strawson, D. I. Stuart, and J. P. Armitage, Using structural information to change the phosphotransfer specificity of a twocomponent chemotaxis signalling complex, PLoS Biol, vol.8, p.1000306, 2010.

G. Mo, H. Zhou, T. Kawamura, and F. W. Dahlquist, Solution structure of a complex of the histidine autokinase CheA with its substrate CheY, Biochemistry, vol.51, pp.3786-3798, 2012.

V. Parashar, N. Mirouze, D. A. Dubnau, and M. B. Neiditch, Structural basis of response regulator dephosphorylation by Rap phosphatases, PLoS Biol, vol.9, p.1000589, 2011.

J. Zapf, U. Sen, . Madhusudan, J. A. Hoch, and K. I. Varughese, A transient interaction between two phosphorelay proteins trapped in a crystal lattice reveals the mechanism of molecular recognition and phosphotransfer in signal transduction, Structure, vol.8, issue.00, p.174, 2000.

R. Zhao, E. J. Collins, R. B. Bourret, and R. E. Silversmith, Structure and catalytic mechanism of the E. coli chemotaxis phosphatase CheZ, Nat. Struct. Biol, vol.9, pp.570-575, 2002.

P. S. Aguilar, A. M. Hernandez-arriaga, L. E. Cybulski, A. C. Erazo, and D. De-mendoza, Molecular basis of thermosensing: a two-component signal transduction thermometer in Bacillus subtilis, EMBO J, vol.20, pp.1681-1691, 2001.

L. E. Cybulski, G. Del-solar, P. O. Craig, M. Espinosa, and D. De-mendoza, Bacillus subtilis DesR functions as a phosphorylation-activated switch to control membrane lipid fluidity, J. Biol. Chem, vol.279, pp.39340-39347, 2004.

S. R. Najle, M. E. Inda, D. De-mendoza, and L. E. Cybulski, Oligomerization of Bacillus subtilis DesR is required for fine tuning regulation of membrane fluidity, Biochim. Biophys. Acta, vol.1790, pp.1238-1243, 2009.

S. Y. Lee, H. S. Cho, J. G. Pelton, D. Yan, R. K. Henderson et al., Crystal structure of an activated response regulator bound to its target, Nat. Struct. Biol, vol.8, pp.52-56, 2001.

I. Baikalov, I. Schröder, M. Kaczor-grzeskowiak, D. Cascio, R. P. Gunsalus et al., NarL dimerization? Suggestive evidence from a new crystal form, Biochemistry, vol.37, pp.3665-3676, 1998.

C. Birck, L. Mourey, P. Gouet, B. Fabry, J. Schumacher et al., Conformational changes induced by phosphorylation of the FixJ receiver domain, Structure, vol.7, pp.1505-1515, 1999.
URL : https://hal.archives-ouvertes.fr/hal-00314286

D. Kern, B. F. Volkman, P. Luginbühl, M. J. Nohaile, S. Kustu et al., Structure of a transiently phosphorylated switch in bacterial signal transduction, Nature, vol.402, pp.894-898, 1999.

S. Y. Lee, H. S. Cho, J. G. Pelton, D. Yan, E. A. Berry et al., Crystal structure of activated CheY. Comparison with other activated receiver domains, J. Biol. Chem, vol.276, pp.16425-16431, 2001.

F. Morcos, A. Pagnani, B. Lunt, A. Bertolino, D. S. Marks et al., Direct-coupling analysis of residue coevolution captures native contacts across many protein families, Proc. Natl. Acad. Sci. U. S. A, vol.108, pp.1293-1301, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01589010

M. Weigt, R. A. White, H. Szurmant, J. A. Hoch, and T. Hwa, Identification of direct residue contacts in protein-protein interaction by message passing, Proc. Natl. Acad. Sci. U. S. A, vol.106, pp.67-72, 2009.

R. L. Creager-allen, R. E. Silversmith, and R. B. Bourret, A link between dimerization and autophosphorylation of the response regulator PhoB, J. Biol. Chem, vol.288, pp.21755-21769, 2013.

E. Kinoshita, E. Kinoshita-kikuta, K. Takiyama, and T. Koike, Phosphate-binding tag, a new tool to visualize phosphorylated proteins, Mol. Cell. Proteomics, vol.5, pp.749-757, 2006.

Y. Pazy, M. A. Motaleb, M. T. Guarnieri, N. W. Charon, R. Zhao et al., Identical phosphatase mechanisms achieved through distinct modes of binding phosphoprotein substrate, Proc. Natl. Acad. Sci. U. S. A, vol.107, pp.1924-1929, 2010.

J. M. Skerker, B. S. Perchuk, A. Siryaporn, E. A. Lubin, O. Ashenberg et al., Rewiring the specificity of two-component signal transduction systems, Cell, vol.133, pp.1043-1054, 2008.

V. A. Feher, J. W. Zapf, J. A. Hoch, J. M. Whiteley, L. P. Mcintosh et al., High-resolution NMR structure and backbone dynamics of the Bacillus subtilis response regulator, Spo0F: implications for phosphorylation and molecular recognition, Biochemistry, vol.36, pp.10015-10025, 1997.

M. Simonovic and K. Volz, A distinct meta-active conformation in the 1.1-A resolution structure of wild-type ApoCheY, J. Biol. Chem, vol.276, pp.28637-28640, 2001.

B. F. Volkman, M. J. Nohaile, N. K. Amy, S. Kustu, and D. E. Wemmer, Three-dimensional solution structure of the N-terminal receiver domain of NTRC, Biochemistry, vol.34, pp.1413-1424, 1995.

A. I. Podgornaia, P. Casino, A. Marina, and M. T. Laub, Structural basis of a rationally rewired protein-protein interface critical to bacterial signaling, Structure, vol.21, pp.1636-1647, 2013.

E. J. Capra, B. S. Perchuk, J. M. Skerker, and M. T. Laub, Adaptive mutations that prevent crosstalk enable the expansion of paralogous signaling protein families, Cell, vol.150, pp.222-232, 2012.

A. K. Gardino, J. Villali, A. Kivenson, M. Lei, C. F. Liu et al., Transient non-native hydrogen bonds promote activation of a signaling protein, Cell, vol.139, pp.1109-1118, 2009.

P. Bachhawat and A. M. Stock, Crystal structures of the receiver domain of the response regulator PhoP from Escherichia coli in the absence and presence of the phosphoryl analog beryllofluoride, J. Bacteriol, vol.189, pp.5987-5995, 2007.

P. B. Iynedjian, Molecular physiology of mammalian glucokinase, Cell. Mol. Life Sci, vol.66, pp.27-42, 2009.

H. Qian, Cooperativity in cellular biochemical processes: noiseenhanced sensitivity, fluctuating enzyme, bistability with nonlinear feedback, and other mechanisms for sigmoidal responses, Annu. Rev. Biophys, vol.41, pp.179-204, 2012.

J. M. Reyrat, M. David, J. Batut, and P. Boistard, FixL of Rhizobium meliloti enhances the transcriptional activity of a mutant FixJD54N protein by phosphorylation of an alternate residue, J. Bacteriol, vol.176, pp.1969-1976, 1994.

A. J. Wolfe, The acetate switch. Microbiol, Mol. Biol. Rev, vol.69, pp.12-50, 2005.

A. H. Klein, A. Shulla, S. A. Reimann, D. H. Keating, and A. J. Wolfe, The intracellular concentration of acetyl phosphate in Escherichia coli is sufficient for direct phosphorylation of two-component response regulators, J. Bacteriol, vol.189, pp.5574-5581, 2007.

J. S. Fraser, J. P. Merlie, . Jr, N. Echols, S. R. Weisfield et al., An atypical receiver domain controls the dynamic polar localization of the Myxococcus xanthus social motility protein FrzS, Mol. Microbiol, vol.65, pp.319-332, 2007.

E. Hong, H. M. Lee, H. Ko, D. U. Kim, B. Y. Jeon et al., Structure of an atypical orphan response regulator protein supports a new phosphorylationindependent regulatory mechanism, J. Biol. Chem, vol.282, pp.20667-20675, 2007.

D. Ruiz, P. Salinas, M. L. Lopez-redondo, M. L. Cayuela, and A. Marina, Phosphorylation-independent activation of the atypical response regulator NblR, Microbiology, vol.154, pp.3002-3015, 2008.

J. Schär, A. Sickmann, and D. Beier, Phosphorylation-independent activity of atypical response regulators of Helicobacter pylori, J. Bacteriol, vol.187, pp.3100-3109, 2005.

L. Wang, X. Tian, J. Wang, H. Yang, K. Fan et al., Autoregulation of antibiotic biosynthesis by binding of the end product to an atypical response regulator, Proc. Natl. Acad. Sci. U. S. A, vol.106, pp.8617-8622, 2009.

R. Paul, T. Jaeger, S. Abel, I. Wiederkehr, M. Folcher et al., Allosteric regulation of histidine kinases by their cognate response regulator determines cell fate, Cell, vol.133, pp.452-461, 2008.

A. J. Mccoy, R. W. Grosse-kunstleve, P. D. Adams, M. D. Winn, L. C. Storoni et al., Phaser crystallographic software, J. Appl. Crystallogr, vol.40, pp.658-674, 2007.

P. Emsley, B. Lohkamp, W. G. Scott, and K. Cowtan, Features and development of Coot, Acta Crystallogr. D Biol. Crystallogr, vol.66, pp.486-501, 2010.

G. Bricogne, E. Blanc, M. Brandl, C. Flensburg, P. Keller et al.,

C. M. Barbieri and A. M. Stock, Universally applicable methods for monitoring response regulator aspartate phosphorylation both in vitro and in vivo using phos-tag-based reagents, Anal. Biochem, vol.376, pp.73-82, 2008.