I. Fridovich, Superoxide radical and superoxide dismutases, Annu. Rev. Biochem, vol.64, pp.97-112, 1995.

W. C. Stallings, K. A. Pattridge, R. K. Strong, and M. L. Ludwig, Manganese and iron superoxide dismutases are structural homologs, J. Biol. Chem, vol.259, pp.10695-10699, 1984.

S. O. Ismail, W. Paramchuk, Y. A. Skeiky, S. G. Reed, A. Bhatia et al., Molecular cloning and characterization of two iron superoxide dismutase cDNAs from Trypanosoma cruzi, Mol. Biochem. Parasitol, vol.86, pp.187-197, 1997.

N. J. Temperton, S. R. Wilkinson, and J. M. Kelly, Cloning of an Fe-superoxide dismutase gene homologue from Trypanosoma cruzi, Mol. Biochem. Parasitol, vol.76, pp.339-343, 1996.

J. A. Urbina, Specific chemotherapy of Chagas disease: relevance, current limitations and new approaches, Acta Trop, vol.115, pp.55-68, 2010.

G. I. Lepesheva, F. Villalta, and M. R. Waterman, Targeting Trypanosoma cruzi sterol 14?-demethylase (CYP51), Adv. Parasitol, vol.75, pp.65-87, 2011.

L. Piacenza, M. P. Zago, G. Peluffo, M. N. Alvarez, M. A. Basombrio et al., Enzymes of the antioxidant network as novel determiners of Trypanosoma cruzi virulence, Int. J. Parasitol, vol.39, pp.1455-1464, 2009.

F. Kierszenbaum, E. Knecht, D. B. Budzko, and M. C. Pizzimenti, Phagocytosis: a defense mechanism against infection with Trypanosoma cruzi, J. Immunol, vol.112, pp.1839-1844, 1974.

M. A. Muñoz-fernández, M. A. Fernández, and M. Fresno, Synergism between tumor necrosis factor-? and interferon-? on macrophage activation for the killing of intracellular Trypanosoma cruzi through a nitric oxide-dependent mechanism, Eur. J. Immunol, vol.22, pp.301-307, 1992.

M. N. Alvarez, G. Peluffo, L. Piacenza, and R. Radi, Intraphagosomal peroxynitrite as a macrophage-derived cytotoxin against internalized Trypanosoma cruzi: consequences for oxidative killing and role of microbial peroxiredoxins in infectivity, J. Biol. Chem, vol.286, pp.6627-6640, 2011.

V. Valez, A. Cassina, I. Batinic-haberle, B. Kalyanaraman, G. Ferrer-sueta et al., Peroxynitrite formation in nitric oxide-exposed submitochondrial particles: detection, oxidative damage and catalytic removal by Mn-porphyrins, Arch. Biochem. Biophys, vol.529, pp.45-54, 2013.

L. Piacenza, F. Irigoín, M. N. Alvarez, G. Peluffo, M. C. Taylor et al., Mitochondrial superoxide radicals mediate programmed cell death in Trypanosoma cruzi: cytoprotective action of mitochondrial iron superoxide dismutase overexpression, Biochem. J, vol.403, pp.323-334, 2007.

V. Demicheli, C. Quijano, B. Alvarez, and R. Radi, Inactivation and nitration of human superoxide dismutase (SOD) by fluxes of nitric oxide and superoxide. Free Radic, Biol. Med, vol.42, pp.1359-1368, 2007.

L. A. Macmillan-crow, J. P. Crow, J. D. Kerby, J. S. Beckman, and J. A. Thompson, Nitration and inactivation of manganese superoxide dismutase in chronic rejection of human renal allografts, Proc. Natl. Acad. Sci. U.S.A, vol.93, pp.11853-11858, 1996.

R. Radi, M. Rodriguez, L. Castro, and R. Telleri, Inhibition of mitochondrial electron transport by peroxynitrite, Arch. Biochem. Biophys, vol.308, pp.89-95, 1994.

P. Ghafourifar, U. Schenk, S. D. Klein, and C. Richter, Mitochondrial nitric-oxide synthase stimulation causes cytochrome c release from isolated mitochondria. Evidence for intramitochondrial peroxynitrite formation, J. Biol. Chem, vol.274, pp.31185-31188, 1999.

F. Yamakura, H. Taka, T. Fujimura, and K. Murayama, Inactivation of human manganese-superoxide dismutase by peroxynitrite is caused by exclusive nitration of tyrosine 34 to 3-nitrotyrosine, J. Biol. Chem, vol.273, pp.14085-14089, 1998.

C. Quijano, D. Hernandez-saavedra, L. Castro, J. M. Mccord, B. A. Freeman et al., Reaction of peroxynitrite with Mn-superoxide dismutase. Role of the metal center in decomposition kinetics and nitration, J. Biol. Chem, vol.276, pp.11631-11638, 2001.

N. B. Surmeli, N. K. Litterman, A. F. Miller, and J. T. Groves, Peroxynitrite mediates active site tyrosine nitration in manganese superoxide dismutase: evidence of a role for the carbonate radical anion, J. Am. Chem. Soc, vol.132, pp.17174-17185, 2010.

D. M. Moreno, M. A. Martí, P. M. De-biase, D. A. Estrin, V. Demicheli et al., Exploring the molecular basis of human manganese superoxide dismutase inactivation mediated by tyrosine 34 nitration, Arch. Biochem. Biophys, vol.507, pp.304-309, 2011.

R. Radi, Protein tyrosine nitration: biochemical mechanisms and structural basis of functional effects, Acc. Chem. Res, vol.46, pp.550-559, 2013.

R. Radi, J. S. Beckman, K. M. Bush, and B. A. Freeman, Peroxynitrite-induced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide, Arch. Biochem. Biophys, vol.288, pp.481-487, 1991.

M. N. Hughes and H. G. Nicklin, A possible role for the species peroxonitrite in nitrification, Biochim. Biophys. Acta, vol.222, pp.660-661, 1970.

M. M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem, vol.72, pp.248-254, 1976.

J. P. Crow, J. B. Sampson, Y. Zhuang, J. A. Thompson, and J. S. Beckman, Decreased zinc affinity of amyotrophic lateral sclerosis-associated superoxide dismutase mutants leads to enhanced catalysis of tyrosine nitration by peroxynitrite, J. Neurochem, vol.69, pp.1936-1944, 1997.

J. M. Mccord and I. Fridovich, Superoxide dismutase: an enzymic function for erythrocuprein (hemocuprein), J. Biol. Chem, vol.244, pp.6049-6055, 1969.

A. V. Peskin and C. C. Winterbourn, Taurine chloramine is more selective than hypochlorous acid at targeting critical cysteines and inactivating creatine kinase and glyceraldehyde-3-phosphate dehydrogenase. Free Radic, Biol. Med, vol.40, pp.45-53, 2006.

B. Alvarez, G. Ferrer-sueta, B. A. Freeman, and R. Radi, Kinetics of peroxynitrite reaction with amino acids and human serum albumin, J. Biol. Chem, vol.274, pp.842-848, 1999.

G. L. Ellman, Tissue sulfhydryl groups, Arch. Biochem. Biophys, vol.82, pp.70-77, 1959.

M. Trujillo, H. Budde, M. D. Piñeyro, M. Stehr, C. Robello et al., Trypanosoma brucei and Trypanosoma cruzi tryparedoxin peroxidases catalytically detoxify peroxynitrite via oxidation of fast reacting thiols, J. Biol. Chem, vol.279, pp.34175-34182, 2004.

C. Brito, M. Naviliat, A. C. Tiscornia, F. Vuillier, G. Gualco et al., Peroxynitrite inhibits T lymphocyte activation and proliferation by promoting impairment of tyrosine phosphorylation and peroxynitrite-driven apoptotic death, J. Immunol, vol.162, pp.3356-3366, 1999.

E. F. Peloso, C. C. Gonçalves, T. M. Silva, L. H. Ribeiro, M. D. Piñeyro et al., Tryparedoxin peroxidases and superoxide dismutases expression as well as ROS release are related to Trypanosoma cruzi epimastigotes growth phases, Arch. Biochem. Biophys, vol.520, pp.117-122, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-00685054

N. Romero, R. Radi, E. Linares, O. Augusto, C. D. Detweiler et al., Reaction of human hemoglobin with peroxynitrite: isomerization to nitrate and secondary formation of protein radicals, J. Biol. Chem, vol.278, pp.44049-44057, 2003.

U. Hellman, Sample preparation by SDS/PAGE and in-gel digestion, EXS, vol.88, pp.43-54, 2000.

S. J. Nicholls, Z. Shen, X. Fu, B. S. Levison, and S. L. Hazen, Quantification of 3-nitrotyrosine levels using a benchtop ion trap mass spectrometry method, Methods Enzymol, vol.396, pp.245-266, 2005.

I. V. Turko and F. Murad, Mapping sites of tyrosine nitration by matrix-assisted laser desorption/ionization mass spectrometry, Methods Enzymol, vol.396, pp.266-275, 2005.

A. G. Leslie, Processing difraction data with mosflm, Evolving Methods for Macromolecular Crystallography, pp.41-51, 2007.

P. Evans, Scaling and assessment of data quality, Acta Crystallogr. D Biol. Crystallogr, vol.62, pp.72-82, 2006.

S. Trapani and J. Navaza, AMoRe: classical and modern, Acta Crystallogr. D Biol. Crystallogr, vol.64, pp.11-16, 2008.

C. Vonrhein, C. Flensburg, P. Keller, A. Sharff, O. Smart et al., Data processing and analysis with the autoPROC toolbox, Acta Crystallogr. D Biol. Crystallogr, vol.67, pp.293-302, 2011.

P. Emsley, B. Lohkamp, W. G. Scott, and K. Cowtan, Features and development of Coot, Acta Crystallogr. D Biol. Crystallogr, vol.66, pp.486-501, 2010.

V. B. Chen, W. B. Arendall, J. J. Headd, D. A. Keedy, R. M. Immormino et al., MolProbity: all-atom structure validation for macromolecular crystallography, Acta Crystallogr. D Biol. Crystallogr, vol.66, pp.12-21, 2010.

T. E. Cheatham, P. Cieplak, and P. A. Kollman, A modified version of the Cornell et al. force field with improved sugar pucker phases and helical repeat, J. Biomol. Struct. Dyn, vol.16, pp.845-862, 1999.

A. A. Petruk, S. Bartesaghi, M. Trujillo, D. A. Estrin, D. Murgida et al., Molecular basis of intramolecular electron transfer in proteins during radical-mediated oxidations: computer simulation studies in model tyrosine-cysteine peptides in solution, Arch. Biochem. Biophys, vol.525, pp.82-91, 2012.

A. Leach, Molecular Modelling: Principles and Applications, 2001.

D. Case, T. Darden, T. Cheatham, C. Simmerling, J. Wang et al., , vol.9, 2006.

D. N. Beratan, J. N. Betts, and J. N. Onuchic, Protein electron transfer rates set by the bridging secondary and tertiary structure, Science, vol.252, pp.1285-1288, 1991.

D. N. Beratan, J. N. Onuchic, J. R. Winkler, and H. B. Gray, Electron-tunneling pathways in proteins, Science, vol.258, pp.1740-1741, 1992.

C. Shih, A. K. Museth, M. Abrahamsson, A. M. Blanco-rodriguez, A. J. Di-bilio et al., Tryptophanaccelerated electron flow through proteins, Science, vol.320, pp.1760-1762, 2008.

J. Stubbe, D. G. Nocera, C. S. Yee, C. , and M. C. , Radical initiation in the class I ribonucleotide reductase: long-range proton-coupled electron transfer?, Chem. Rev, vol.103, pp.2167-2201, 2003.

D. Alvarez-paggi, D. F. Martín, P. M. Debiase, P. Hildebrandt, M. A. Martí et al., Molecular basis of coupled protein and electron transfer dynamics of cytochrome c in biomimetic complexes, J. Am. Chem. Soc, vol.132, pp.5769-5778, 2010.

C. Aubert, P. Mathis, A. P. Eker, and K. Brettel, Intraprotein electron transfer between tyrosine and tryptophan in DNA photolyase from Anacystis nidulans, Proc. Natl. Acad. Sci. U.S.A, vol.96, pp.5423-5427, 1999.

H. K. Ly, M. A. Marti, D. F. Martin, D. Alvarez-paggi, W. Meister et al., Thermal fluctuations determine the electron-transfer rates of cytochrome c in electrostatic and covalent complexes, Chemphyschem, vol.11, pp.1225-1235, 2010.

H. Li, A. D. Robertson, and J. H. Jensen, Very fast empirical prediction and rationalization of protein pK a values, Proteins, vol.61, pp.704-721, 2005.

D. C. Bas, D. M. Rogers, and J. H. Jensen, Very fast prediction and rationalization of pK a values for protein-ligand complexes, Proteins, vol.73, pp.765-783, 2008.

M. H. Olsson, C. R. Søndergaard, M. Rostkowski, and J. H. Jensen, PROPKA3: consistent treatment of internal and surface residues in empirical pK a predictions, J. Chem. Theory Comput, vol.7, pp.525-537, 2011.

C. R. Søndergaard, M. H. Olsson, M. Rostkowski, and J. H. Jensen, Improved treatment of ligands and coupling effects in empirical calculation and rationalization of pK a values, J. Chem. Theory Comput, vol.7, pp.2284-2295, 2011.

M. C. Taylor and J. M. Kelly, pTcINDEX: a stable tetracyclineregulated expression vector for Trypanosoma cruzi, BMC Biotechnol, vol.6, p.32, 2006.

L. Piacenza, G. Peluffo, M. N. Alvarez, J. M. Kelly, S. R. Wilkinson et al., Peroxiredoxins play a major role in protecting Trypanosoma cruzi against macrophage-and endogenously-derived peroxynitrite, Biochem. J, vol.410, pp.359-368, 2008.

S. R. Wilkinson, S. R. Prathalingam, M. C. Taylor, A. Ahmed, D. Horn et al., Functional characterisation of the iron superoxide dismutase gene repertoire in Trypanosoma brucei. Free Radic, Biol. Med, vol.40, pp.198-209, 2006.

H. J. Forman and I. Fridovich, Superoxide dismutase: a comparison of rate constants, Arch. Biochem. Biophys, vol.158, pp.396-400, 1973.

J. P. Crow, J. S. Beckman, and J. M. Mccord, Sensitivity of the essential zinc-thiolate moiety of yeast alcohol dehydrogenase to hypochlorite and peroxynitrite, Biochemistry, vol.34, pp.3544-3552, 1995.

M. H. Zou, A. Daiber, J. A. Peterson, H. Shoun, and V. Ullrich, Rapid reactions of peroxynitrite with heme-thiolate proteins as the basis for protection of prostacyclin synthase from inactivation by nitration, Arch. Biochem. Biophys, vol.376, pp.149-155, 2000.

G. Ferrer-sueta and R. Radi, Chemical biology of peroxynitrite: kinetics, diffusion, and radicals, ACS Chem. Biol, vol.4, pp.161-177, 2009.

R. Radi, Nitric oxide, oxidants, and protein tyrosine nitration, Proc. Natl. Acad. Sci. U.S.A, vol.101, pp.4003-4008, 2004.

M. Tien, B. S. Berlett, R. L. Levine, P. B. Chock, and E. R. Stadtman, Peroxynitrite-mediated modification of proteins at physiological carbon dioxide concentration: pH dependence of carbonyl formation, tyrosine nitration, and methionine oxidation, Proc. Natl. Acad. Sci. U.S.A, vol.96, pp.7809-7814, 1999.

A. Denicola, B. A. Freeman, M. Trujillo, and R. Radi, Peroxynitrite reaction with carbon dioxide/bicarbonate: kinetics and influence on peroxynitrite-mediated oxidations, Arch. Biochem. Biophys, vol.333, pp.49-58, 1996.

S. V. Lymar and J. K. Hurst, Carbon dioxide: physiological catalyst for peroxynitrite-mediated cellular damage or cellular protectant?, Chem. Res. Toxicol, vol.9, pp.845-850, 1996.

W. A. Pryor, J. N. Lemercier, H. Zhang, R. M. Uppu, and G. L. Squadrito, The catalytic role of carbon dioxide in the decomposition of peroxynitrite. Free Radic, Biol. Med, vol.23, pp.331-338, 1997.

W. H. Koppenol and R. Kissner, Can O?NOOH undergo homolysis?, Chem. Res. Toxicol, vol.11, pp.87-90, 1998.

W. H. Koppenol, J. J. Moreno, W. A. Pryor, H. Ischiropoulos, and J. S. Beckman, Peroxynitrite, a cloaked oxidant formed by nitric oxide and superoxide, Chem. Res. Toxicol, vol.5, pp.834-842, 1992.

E. Ford, M. N. Hughes, and P. Wardman, Kinetics of the reactions of nitrogen dioxide with glutathione, cysteine, and uric acid at physiological pH. Free Radic, Biol. Med, vol.32, pp.1314-1323, 2002.

C. D. Reiter, R. J. Teng, and J. S. Beckman, Superoxide reacts with nitric oxide to nitrate tyrosine at physiological pH via peroxynitrite, J. Biol. Chem, vol.275, pp.32460-32466, 2000.

T. Sawa, T. Akaike, and H. Maeda, Tyrosine nitration by peroxynitrite formed from nitric oxide and superoxide generated by xanthine oxidase, J. Biol. Chem, vol.275, pp.32467-32474, 2000.

L. A. Abriata, A. Cassina, V. Tórtora, M. Marín, J. M. Souza et al., Nitration of solvent-exposed tyrosine 74 on cytochrome c triggers heme iron-methionine 80 bond disruption: nuclear magnetic resonance and optical spectroscopy studies, J. Biol. Chem, vol.284, pp.17-26, 2009.

J. F. Bachega, M. V. Navarro, L. Bleicher, R. K. Bortoleto-bugs, D. Dive et al., Systematic structural studies of iron superoxide dismutases from human parasites and a statistical coupling analysis of metal binding specificity, Proteins, vol.77, pp.26-37, 2009.

I. W. Boucher, A. M. Brzozowski, J. A. Brannigan, C. Schnick, D. J. Smith et al., The crystal structure of superoxide dismutase from Plasmodium falciparum, BMC Struct. Biol, vol.6, p.20, 2006.

Y. Guan, M. J. Hickey, G. E. Borgstahl, R. A. Hallewell, J. R. Lepock et al., Crystal structure of Y34F mutant human mitochondrial manganese superoxide dismutase and the functional role of tyrosine 34, Biochemistry, vol.37, pp.4722-4730, 1998.

S. Y. Reece, J. M. Hodgkiss, J. Stubbe, and D. G. Nocera, Protoncoupled electron transfer: the mechanistic underpinning for radical transport and catalysis in biology, Philos. Trans. R. Soc. Lond B Biol. Sci, vol.361, pp.1351-1364, 2006.

S. Bhattacharjee, L. J. Deterding, J. Jiang, M. G. Bonini, K. B. Tomer et al., Electron transfer between a tyrosyl radical and a cysteine residue in hemoproteins: spin trapping analysis, J. Am. Chem. Soc, vol.129, pp.13493-13501, 2007.

P. K. Witting and A. G. Mauk, Reaction of human myoglobin and H 2 O 2 . Electron transfer between tyrosine 103 phenoxyl radical and cysteine 110 yields a protein-thiyl radical, J. Biol. Chem, vol.276, pp.16540-16547, 2001.

B. Giese, M. Graber, and M. Cordes, Electron transfer in peptides and proteins, Curr. Opin. Chem. Biol, vol.12, pp.755-759, 2008.

M. Cordes, A. Köttgen, C. Jasper, O. Jacques, H. Boudebous et al., Influence of amino acid side chains on long-distance electron transfer in peptides: electron hopping via "stepping stones, Angew Chem. Int. Ed. Engl, vol.47, pp.3461-3463, 2008.

P. Graceffa, Spin labeling of protein sulfhydryl groups by spin trapping a sulfur radical: application to bovine serum albumin and myosin, Arch. Biochem. Biophys, vol.225, pp.802-808, 1983.

K. R. Maples, S. J. Jordan, and R. P. Mason, In vivo rat hemoglobin thiyl free radical formation following administration of phenylhydrazine and hydrazine-based drugs, Drug Metab. Dispos, vol.16, pp.799-803, 1988.

R. M. Gatti, R. Radi, A. , and O. , Peroxynitrite-mediated oxidation of albumin to the protein-thiyl free radical, FEBS Lett, vol.348, pp.287-290, 1994.

S. Carballal, S. Bartesaghi, and R. Radi, Kinetic and mechanistic considerations to assess the biological fate of peroxynitrite, Biochim. Biophys. Acta, vol.1840, pp.768-780, 2014.

G. D. Fasman, Handbook of Biochemistry and Molecular Biology: Physical Data and Chemical Data, pp.305-351, 1976.

R. Radi, Peroxynitrite, a stealthy biological oxidant, J. Biol. Chem, vol.288, pp.26464-26472, 2013.

P. Quint, R. Reutzel, R. Mikulski, R. Mckenna, and D. N. Silverman, Crystal structure of nitrated human manganese superoxide dismutase: mechanism of inactivation. Free Radic, Biol. Med, vol.40, pp.453-458, 2006.

H. Ischiropoulos, L. Zhu, J. Chen, M. Tsai, J. C. Martin et al., Peroxynitrite-mediated tyrosine nitration catalyzed by superoxide dismutase, Arch. Biochem. Biophys, vol.298, pp.431-437, 1992.

P. D. Adams, P. V. Afonine, G. Bunkóczi, V. B. Chen, I. W. Davis et al., PHENIX: a comprehensive Python-based system for macromolecular structure solution, Acta Crystallogr. D Biol. Crystallogr, vol.66, pp.213-221, 2010.

R. Trujillo, L. Radi, and . Piacenza,

C. Robello, M. A. Martí, N. Larrieux, A. Buschiazzo, M. Durán et al., ELECTRON TRANSFER RADICAL BY CYS83 IN Fe-SODB THROUGH INTRAMOLECULAR B: DISPARATE SUSCEPTIBILITIES DUE TO THE REPAIR OF TYR35 Iron-Superoxide Dismutases (Fe-SODs) A and Trypanosoma cruzi Inactivation of Structural and Molecular Basis of the Peroxynitrite-mediated Nitration, vol.289, pp.12760-12778, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-02554117

, J. Biol. Chem

, Access the most updated version of this article at doi