M. Muramatsu, Class switch recombination and hypermutation require activationinduced cytidine deaminase (AID), a potential RNA editing enzyme, Cell, vol.102, pp.553-563, 2000.

P. Revy, Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the Hyper-IgM syndrome (HIGM2), Cell, vol.102, pp.565-575, 2000.

J. U. Peled, The biochemistry of somatic hypermutation, Annu. Rev. Immunol, vol.26, pp.481-511, 2007.

J. M. Di-noia and M. Neuberger, Molecular mechanisms of antibody somatic hypermutation, Annu. Rev. Biochem, vol.76, pp.1-22, 2007.

J. Chaudhuri, Evolution of the immunoglobulin heavy chain class switch recombination mechanism, Adv. Immunol, vol.94, pp.157-214, 2007.

A. Martin and M. D. Scharff, Somatic hypermutation of the AID transgene in B and non-B cells, Proc. Natl. Acad. Sci. USA, vol.99, pp.12304-12308, 2002.

I. M. Okazaki, Constitutive expression of AID leads to tumorigenesis, J. Exp. Med, vol.197, pp.1173-1181, 2003.

M. Liu, Two levels of protection for the B cell genome during somatic hypermutation, Nature, vol.451, pp.841-845, 2008.

L. Pasqualucci, BCL-6 mutations in normal germinal center B cells: evidence of somatic hypermutation acting outside Ig loci, Proc. Natl. Acad. Sci. USA, vol.95, pp.11816-11821, 1998.

H. M. Shen, A. Peters, B. Baron, X. Zhu, and U. Storb, Mutation of BCL-6 gene in normal B cells by the process of somatic hypermutation of Ig genes, Science, vol.280, pp.1750-1752, 1998.

Y. Dorsett, A role for AID in chromosome translocations between c-myc and the IgH variable region, J. Exp. Med, vol.204, pp.2225-2232, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00188978

A. R. Ramiro, AID is required for c-myc/IgH chromosome translocations in vivo, Cell, vol.118, pp.431-438, 2004.

E. E. Crouch, Regulation of AID expression in the immune response, J. Exp. Med, vol.204, pp.1145-1156, 2007.

V. G. De-yébenes, miR-181b negatively regulates activation-induced cytidine deaminase in B cells, J. Exp. Med, vol.205, pp.2199-2206, 2008.

Y. Dorsett, MicroRNA-155 suppresses activation-induced cytidine deaminasemediated Myc-Igh translocation, Immunity, vol.28, pp.630-638, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00350863

G. Teng, MicroRNA-155 is a negative regulator of activation-induced cytidine deaminase, Immunity, vol.28, pp.621-629, 2008.

S. Ito, Activation-induced cytidine deaminase shuttles between nucleus and cytoplasm like apolipoprotein B mRNA editing catalytic polypeptide 1, Proc. Natl. Acad. Sci. USA, vol.101, pp.1975-1980, 2004.

K. M. Mcbride, V. M. Barreto, A. R. Ramiro, P. Stavropoulos, and M. C. Nussenzweig, Somatic hypermutation is limited by CRM1-dependent nuclear export of activationinduced deaminase, J. Exp. Med, vol.199, pp.1235-1244, 2004.

S. Aoufouchi, Proteasomal degradation restricts the nuclear lifespan of AID, J. Exp. Med, vol.205, pp.1357-1368, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00321674

U. Basu, The AID antibody diversification enzyme is regulated by protein kinase A phosphorylation, Nature, vol.438, pp.508-511, 2005.

K. M. Mcbride, Regulation of hypermutation by activation-induced cytidine deaminase phosphorylation, Proc. Natl. Acad. Sci. USA 103, pp.8798-8803, 2006.

L. Pasqualucci, Y. Kitaura, H. Gu, and R. Dalla-favera, PKA-mediated phosphorylation regulates the function of activation-induced deaminase (AID) in B cells, Proc. Natl. Acad. Sci. USA, vol.103, pp.395-400, 2006.

C. Rada, J. M. Jarvis, and C. Milstein, AID-GFP chimeric protein increases hypermutation of Ig genes with no evidence of nuclear localization, Proc. Natl. Acad. Sci. USA, vol.99, pp.7003-7008, 2002.

S. S. Brar, M. Watson, and M. Diaz, Activation-induced cytosine deaminase (AID) is actively exported out of the nucleus but retained by the induction of DNA breaks, J. Biol. Chem, vol.279, pp.26395-26401, 2004.

W. D. Richardson, A. D. Mills, S. M. Dilworth, R. A. Laskey, and C. Dingwall, Nuclear protein migration involves two steps: rapid binding at the nuclear envelope followed by slower translocation through nuclear pores, Cell, vol.52, pp.655-664, 1988.

D. D. Newmeyer and D. J. Forbes, Nuclear import can be separated into distinct steps in vitro: nuclear pore binding and translocation, Cell, vol.52, pp.641-653, 1988.

A. Guiochon-mantel, Nucleocytoplasmic shuttling of the progesterone receptor, EMBO J, vol.10, pp.3851-3859, 1991.

M. Larijani, AID associates with single-stranded DNA with high affinity and a long complex half-life in a sequence-independent manner, Mol. Cell. Biol, vol.27, pp.20-30, 2007.

I. G. Macara, Transport into and out of the nucleus. Microbiol, Mol. Biol. Rev, vol.65, pp.570-594, 2001.

D. Görlich and U. Kutay, Transport between the cell nucleus and the cytoplasm, Annu. Rev. Cell Dev. Biol, vol.15, pp.607-660, 1999.

K. M. Chen, Structure of the DNA deaminase domain of the HIV-1 restriction factor APOBEC3G, Nature, vol.452, pp.116-119, 2008.

L. G. Holden, Crystal structure of the anti-viral APOBEC3G catalytic domain and functional implications, Nature, vol.456, pp.121-124, 2008.

C. Prochnow, The APOBEC-2 crystal structure and functional implications for the deaminase AID, Nature, vol.445, pp.447-451, 2007.

H. Nilsen, Analysis of uracil-DNA glycosylases from the murine Ung gene reveals differential expression in tissues and in embryonic development and a subcellular sorting pattern that differs from the human homologues, Nucleic Acids Res, vol.28, pp.2277-2285, 2000.

S. G. Conticello, Interaction between antibody-diversification enzyme AID and spliceosome-associated factor CTNNBL1, Mol. Cell, vol.31, pp.474-484, 2008.

A. Lange, Classical nuclear localization signals: definition, function, and interaction with importin a, J. Biol. Chem, vol.282, pp.5101-5105, 2007.

Y. Miyamoto, Cellular stresses induce the nuclear accumulation of importin a and cause a conventional nuclear import block, J. Cell Biol, vol.165, pp.617-623, 2004.

M. Kodiha, A. Chu, N. Matusiewicz, and U. Stochaj, Multiple mechanisms promote the inhibition of classical nuclear import upon exposure to severe oxidative stress, Cell Death Differ, vol.11, pp.862-874, 2004.

V. Shivarov, R. Shinkura, and T. Honjo, Dissociation of in vitro DNA deamination activity and physiological functions of AID mutants, Proc. Natl. Acad. Sci. USA 105, pp.15866-15871, 2008.

T. Doi, The C-terminal region of activation-induced cytidine deaminase is responsible for a recombination function other than DNA cleavage in class switch recombination, Proc. Natl. Acad. Sci. USA, vol.106, pp.2758-2763, 2009.

V. Barreto, B. Reina-san-martin, A. R. Ramiro, K. M. Mcbride, and M. C. Nussenzweig, C-terminal deletion of AID uncouples class switch recombination from somatic hypermutation and gene conversion, Mol. Cell, vol.12, pp.501-508, 2003.

V. Ta, AID mutant analyses indicate requirement for class-switch-specific cofactors, Nat. Immunol, vol.4, pp.843-848, 2003.

R. Shinkura, Separate domains of AID are required for somatic hypermutation and class-switch recombination, Nat. Immunol, vol.5, pp.707-712, 2004.

E. C. Lacasse and Y. A. Lefebvre, Nuclear localization signals overlap DNA-or RNAbinding domains in nucleic acid-binding proteins, Nucleic Acids Res, vol.23, pp.1647-1656, 1995.

A. Chester, The apolipoprotein B mRNA editing complex performs a multifunctional cycle and suppresses nonsense-mediated decay, EMBO J, vol.22, pp.3971-3982, 2003.

Y. Yang and H. C. Smith, Multiple protein domains determine the cell type-specific nuclear distribution of the catalytic subunit required for apolipoprotein B mRNA editing, Proc. Natl. Acad. Sci. USA, vol.94, pp.13075-13080, 1997.

S. K. Dickerson, E. Market, E. Besmer, and F. N. Papavasiliou, AID mediates hypermutation by deaminating single stranded DNA, J. Exp. Med, vol.197, pp.1291-1296, 2003.

G. Yang, Activation-induced deaminase cloning, localization, and protein extraction from young VH-mutant rabbit appendix, Proc. Natl. Acad. Sci. USA, vol.102, pp.17083-17088, 2005.

R. P. Bennett, V. Presnyak, J. E. Wedekind, and H. C. Smith, Nuclear exclusion of the HIV-1 host defense factor APOBEC3G requires a novel cytoplasmic retention signal and is not dependent on RNA binding, J. Biol. Chem, vol.283, pp.7320-7327, 2008.

P. P. Lau, H. J. Zhu, A. Baldini, C. Charnsangavej, and L. Chan, Dimeric structure of a human apolipoprotein B mRNA editing protein and cloning and chromosomal localization of its gene, Proc. Natl. Acad. Sci. USA, vol.91, pp.8522-8526, 1994.

M. D. Stenglein, H. Matsuo, and R. S. Harris, Two regions within the amino-terminal half of APOBEC3G cooperate to determine cytoplasmic localization, J. Virol, vol.82, pp.9591-9599, 2008.

X. Wu, P. Geraldes, J. L. Platt, and M. Cascalho, The double-edged sword of activationinduced cytidine deaminase, J. Immunol, vol.174, pp.934-941, 2005.

G. Cattoretti, Nuclear and cytoplasmic AID in extrafollicular and germinal center B cells, Blood, vol.107, pp.3967-3975, 2006.

A. Greiner, Differential expression of activation-induced cytidine deaminase (AID) in nodular lymphocyte-predominant and classical Hodgkin lymphoma, J. Pathol, vol.205, pp.541-547, 2005.

L. Pasqualucci, Expression of the AID protein in normal and neoplastic B cells, Blood, vol.104, pp.3318-3325, 2004.

S. K. Petersen-mahrt, R. S. Harris, and M. S. Neuberger, AID mutates E. coli suggesting a DNA deamination mechanism for antibody diversification, Nature, vol.418, pp.99-104, 2002.

J. M. Di-noia, Dependence of antibody gene diversification on uracil excision, J. Exp. Med, vol.204, pp.3209-3219, 2007.

T. Kitamura, Retrovirus-mediated gene transfer and expression cloning: powerful tools in functional genomics, Exp. Hematol, vol.31, pp.1007-1014, 2003.

W. Zhang, Clonal instability of V region hypermutation in the Ramos Burkitt's lymphoma cell line, Int. Immunol, vol.13, pp.1175-1184, 2001.