R. Schauer and . Victor, Ginsburg's influence on my research of the role of sialic acids in biological recognition, Arch Biochem Biophys, vol.426, pp.132-141, 2004.

E. R. Vimr, K. A. Kalivoda, E. L. Deszo, and S. M. Steenbergen, Diversity of microbial sialic acid metabolism, Microbiol Mol Biol Rev, vol.68, pp.132-153, 2004.

T. Angata and A. Varki, Chemical diversity in the sialic acids and related alpha-keto acids: an evolutionary perspective, Chem Rev, vol.102, pp.439-469, 2002.

A. Preston, R. E. Mandrell, B. W. Gibson, and M. A. Apicella, The lipooligosaccharides of pathogenic gram-negative bacteria, Crit Rev Microbiol, vol.22, pp.139-180, 1996.

E. Vimr and C. Lichtensteiger, To sialylate, or not to sialylate: that is the question, Trends Microbiol, vol.10, pp.254-257, 2002.

R. Schauer, G. Reuter, H. Muhlpfordt, A. F. Andrade, and M. E. Pereira, The occurrence of N-acetyl-and N-glycoloylneuraminic acid in Trypanosoma cruzi, Hoppe Seylers Z Physiol Chem, vol.364, pp.1053-1057, 1983.

A. C. Frasch, Functional diversity in the trans-sialidase and mucin families in Trypanosoma cruzi, Parasitol Today, vol.16, pp.282-286, 2000.

J. Mucci, M. G. Risso, M. S. Leguizamon, A. C. Frasch, and O. Campetella, The trans-sialidase from Trypanosoma cruzi triggers apoptosis by target cell sialylation, Cell Microbiol, vol.8, pp.1086-1095, 2006.

R. L. Tarleton, Immune system recognition of Trypanosoma cruzi, Curr Opin Immunol, vol.19, pp.430-434, 2007.

T. Izard, M. C. Lawrence, R. L. Malby, G. G. Lilley, and P. M. Colman, The three-dimensional structure of N-acetylneuraminate lyase from Escherichia coli, Structure, vol.2, pp.361-369, 1994.

M. E. Tanner, The enzymes of sialic acid biosynthesis, Bioorg Chem, vol.33, pp.216-228, 2005.

W. K. Chou, S. Hinderlich, W. Reutter, and M. E. Tanner, Sialic acid biosynthesis: stereochemistry and mechanism of the reaction catalyzed by the mammalian UDP-N-acetylglucosamine 2-epimerase, J Am Chem Soc, vol.125, pp.2455-2461, 2003.

R. E. Campbell, S. C. Mosimann, M. E. Tanner, and N. C. Strynadka, The structure of UDP-N-acetylglucosamine 2-epimerase reveals homology to phosphoglycosyl transferases, Biochemistry, vol.39, pp.14993-15001, 2000.

L. M. Velloso, S. S. Bhaskaran, R. Schuch, and V. A. Fischetti, Stebbins CE: A structural basis for the allosteric regulation of nonhydrolysing UDP-GlcNAc 2-epimerases, EMBO Rep, vol.9, pp.199-205, 2008.

W. A. Weihofen, M. Berger, H. Chen, W. Saenger, and S. Hinderlich, Structures of human N-acetylglucosamine kinase in two complexes with N-acetylglucosamine and with ADP/glucose: insights into substrate specificity and regulation, J Mol Biol, vol.364, pp.388-399, 2006.

J. Penner, L. R. Mantey, S. Elgavish, D. Ghaderi, S. Cirak et al., Influence of UDP-GlcNAc 2-epimerase/ManNAc kinase mutant proteins on hereditary inclusion body myopathy, Biochemistry, vol.45, pp.2968-2977, 2006.

D. Ghaderi, H. M. Strauss, S. Reinke, S. Cirak, W. Reutter et al., Evidence for dynamic interplay of different oligomeric states of UDP-N-acetylglucosamine 2-epimerase/ N-acetylmannosamine kinase by biophysical methods, J Mol Biol, vol.369, pp.746-758, 2007.

J. Gunawan, D. Simard, M. Gilbert, A. L. Lovering, W. W. Wakarchuk et al., Structural and mechanistic analysis of sialic acid synthase NeuB from Neisseria meningitidis in complex with Mn 2+ , phosphoenolpyruvate, and Nacetylmannosaminitol, J Biol Chem, vol.280, pp.3555-3563, 2005.

M. L. Reaves, L. C. Lopez, and S. M. Daskalova, Replacement of the antifreeze-like domain of human N-acetylneuraminic acid phosphate synthase with the mouse antifreeze-like domain impacts both N-acetylneuraminic acid 9-phosphate synthase and 2-keto-3-deoxy-D-glycero-D-galacto-nonulosonic acid 9-phosphate synthase activities, BMB Rep, vol.41, pp.72-78, 2008.

T. Hamada, Y. Ito, T. Abe, F. Hayashi, P. Guntert et al., Solution structure of the antifreeze-like domain of human sialic acid synthase, Protein Sci, vol.15, pp.1010-1016, 2006.

S. Krapp, A. K. Munster-kuhnel, J. T. Kaiser, R. Huber, J. Tiralongo et al., The crystal structure of murine CMP-5-N-acetylneuraminic acid synthetase, J Mol Biol, vol.334, pp.625-637, 2003.

S. C. Mosimann, M. Gilbert, D. Dombroswki, R. To, W. Wakarchuk et al., Structure of a sialic acid-activating synthetase, CMP-acylneuraminate synthetase in the presence and absence of CDP, J Biol Chem, vol.276, pp.8190-8196, 2001.

A. K. Munster-kuhnel, J. Tiralongo, S. Krapp, B. Weinhold, V. Ritz-sedlacek et al., Structure and function of vertebrate CMP-sialic acid synthetases, Glycobiology, vol.14, pp.43-51, 2004.

C. P. Chiu, A. G. Watts, L. L. Lairson, M. Gilbert, D. Lim et al., Structural analysis of the sialyltransferase CstII from Campylobacter jejuni in complex with a substrate analog, Nat Struct Mol Biol, vol.11, pp.163-170, 2004.

C. P. Chiu, L. L. Lairson, M. Gilbert, W. W. Wakarchuk, S. G. Withers et al., Structural analysis of the alpha-2,3-sialyltransferase Cst-I from Campylobacter jejuni in apo and substrate-analogue bound forms, Biochemistry, vol.46, pp.7196-7204, 2007.

, The authors provide a detailed structural comparison of the bifunctional a-2,3/a-2,8 CstII with this newly reported regioselective CstI

D. U. Kim, J. H. Yoo, Y. J. Lee, K. S. Kim, and H. S. Cho, Structural analysis of sialyltransferase PM0188 from Pasteurella multocida complexed with donor analogue and acceptor sugar, BMB Rep, vol.41, pp.48-54, 2008.

L. Ni, M. Sun, H. Yu, H. Chokhawala, X. Chen et al., Cytidine 5 0 -monophosphate (CMP)-induced structural changes in a multifunctional sialyltransferase from Pasteurella multocida, Biochemistry, vol.45, pp.2139-2148, 2006.

Y. Kakuta, N. Okino, H. Kajiwara, M. Ichikawa, Y. Takakura et al., Crystal structure of Vibrionaceae Photobacterium sp. JT-ISH-224 alpha2,6-sialyltransferase in a ternary complex with donor product CMP and acceptor substrate lactose: catalytic mechanism and substrate recognition, Glycobiology, vol.18, pp.66-73, 2008.

N. Okino, Y. Kakuta, H. Kajiwara, M. Ichikawa, Y. Takakura et al., Purification, crystallization and preliminary crystallographic characterization of the alpha 2,6-sialyltransferase from Photobacterium sp

, Acta Crystallogr Sect F Struct Biol Cryst Commun, vol.63, pp.662-664, 2007.

L. Ni, H. A. Chokhawala, H. Cao, R. Henning, L. Ng et al., Crystal structures of Pasteurella multocida sialyltransferase complexes with acceptor and donor analogues reveal substrate binding sites and catalytic mechanism, Biochemistry, vol.46, pp.6288-6298, 2007.

, Using a fluorinated CMP-NeuNAc substrate, the authors are able to solve the structure of this GT-B sialyltransferase in complex with both the donor and acceptor substrates

T. Yamamoto, Y. Hamada, M. Ichikawa, H. Kajiwara, T. Mine et al., A beta-galactoside alpha2,6-sialyltransferase produced by a marine bacterium, Photobacterium leiognathi JT-SHIZ-145, is active at pH 8, Glycobiology, vol.17, pp.1167-1174, 2007.

C. Breton, L. Snajdrova, C. Jeanneau, J. Koca, and A. Imberty, Structures and mechanisms of glycosyltransferases, Glycobiology, vol.16, pp.29-37, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00305830

M. S. Sujatha and P. V. Balaji, Fold-recognition and comparative modeling of human alpha2,3-sialyltransferases reveal their sequence and structural similarities to CstII from Campylobacter jejuni, BMC Struct Biol, vol.6, p.9, 2006.

C. Jeanneau, V. Chazalet, C. Auge, D. M. Soumpasis, A. Harduin-lepers et al., Structure-function analysis of the human sialyltransferase ST3Gal I: role of nglycosylation and a novel conserved sialylmotif, J Biol Chem, vol.279, pp.13461-13468, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00086299

F. Freiberger, H. Claus, A. Gunzel, I. Oltmann-norden, J. Vionnet et al., Biochemical characterization of a Neisseria meningitidis polysialyltransferase reveals novel functional motifs in bacterial sialyltransferases, Mol Microbiol, vol.65, pp.1258-1275, 2007.

M. F. Amaya, A. G. Watts, I. Damager, A. Wehenkel, T. Nguyen et al., Structural insights into the catalytic mechanism of Trypanosoma cruzi trans-sialidase, Structure, vol.12, pp.775-784, 2004.

I. Damager, S. Buchini, M. F. Amaya, A. Buschiazzo, P. Alzari et al., Kinetic and mechanistic analysis of Trypanosoma cruzi trans-sialidase reveals a classical ping-pong mechanism with acid/base catalysis, Biochemistry, vol.47, pp.3507-3512, 2008.
URL : https://hal.archives-ouvertes.fr/pasteur-02554111

, This in-depth kinetic study, completing previous structural work, settles controversial issues on trans-sialidase catalysis, unequivocally pointing to a double displacement mechanism

A. G. Watts, I. Damager, M. L. Amaya, A. Buschiazzo, P. Alzari et al., Trypanosoma cruzi trans-sialidase operates through a covalent sialyl-enzyme intermediate: tyrosine is the catalytic nucleophile, J Am Chem Soc, vol.125, pp.7532-7533, 2003.

A. G. Watts, P. Oppezzo, S. G. Withers, P. M. Alzari, and A. Buschiazzo, Structural and kinetic analysis of two covalent sialosylenzyme intermediates on Trypanosoma rangeli sialidase, J Biol Chem, vol.281, pp.4149-4155, 2006.

S. L. Newstead, J. A. Potter, J. C. Wilson, G. Xu, C. H. Chien et al., The structure of Clostridium perfringens NanI sialidase and its catalytic intermediates, J Biol Chem, vol.283, pp.9080-9088, 2008.

J. N. Watson, V. Dookhun, T. J. Borgford, and A. J. Bennet, Mutagenesis of the conserved active-site tyrosine changes a retaining sialidase into an inverting sialidase, Biochemistry, vol.42, pp.12682-12690, 2003.

J. N. Watson, D. Indurugalla, L. L. Cheng, A. A. Narine, and A. J. Bennet, The hydrolase and transferase activity of an inverting mutant sialidase using non-natural beta-sialoside substrates, Biochemistry, vol.45, pp.13264-13275, 2006.

J. N. Watson, S. Newstead, A. A. Narine, G. Taylor, and A. J. Bennet, Two nucleophilic mutants of the Micromonospora viridifaciens sialidase operate with retention of configuration by two different mechanisms, Chembiochem, vol.6, pp.1999-2004, 2005.

, Three mutants of the nucleophilic tyrosine are demonstrated to react by three different mechanisms: S N 1 inversion, S N 2 retention, and S N 1 retention. Tantalizing kinetic and structural work

S. Newstead, J. N. Watson, T. L. Knoll, A. J. Bennet, and G. Taylor, Structure and mechanism of action of an inverting mutant sialidase, Biochemistry, vol.44, pp.9117-9122, 2005.

D. L. Zechel and S. G. Withers, Dissection of nucleophilic and acidbase catalysis in glycosidases, Curr Opin Chem Biol, vol.5, pp.643-649, 2001.

M. Von-itzstein, The war against influenza: discovery and development of sialidase inhibitors, Nat Rev Drug Discov, vol.6, pp.967-974, 2007.

L. M. Chavas, C. Tringali, P. Fusi, B. Venerando, G. Tettamanti et al., Crystal structure of the human cytosolic sialidase Neu2. Evidence for the dynamic nature of substrate recognition, J Biol Chem, vol.280, pp.469-475, 2005.

S. Magesh, S. Moriya, T. Suzuki, T. Miyagi, H. Ishida et al., Design, synthesis, and biological evaluation of human sialidase inhibitors. Part 1. Selective inhibitors of lysosomal sialidase (NEU1), Bioorg Med Chem Lett, vol.18, pp.532-537, 2008.

S. Magesh, T. Suzuki, T. Miyagi, H. Ishida, and M. Kiso, Homology modeling of human sialidase enzymes NEU1, NEU3 and NEU4 based on the crystal structure of NEU2: hints for the design of selective NEU3 inhibitors, J Mol Graph Model, vol.25, pp.196-207, 2006.

K. Stummeyer, A. Dickmanns, M. Muhlenhoff, R. Gerardy-schahn, and R. Ficner, Crystal structure of the polysialic acid-degrading endosialidase of bacteriophage K1F, Nat Struct Mol Biol, vol.12, pp.90-96, 2005.

, The polysialic acid endosialidase is structurally homologous to exosialidases, but differs markedly in its active site. Substrate-specific determinants are suggested to modulate the binding mode and catalytic mechanism

A. E. Manzi, H. H. Higa, S. Diaz, and A. Varki, Intramolecular self-cleavage of polysialic acid, J Biol Chem, vol.269, pp.23617-23624, 1994.

A. K. Chong, M. S. Pegg, N. R. Taylor, and M. Von-itzstein, Evidence for a sialosyl cation transition-state complex in the reaction of sialidase from influenza virus, Eur J Biochem, vol.207, pp.335-343, 1992.

S. Buchini, A. Buschiazzo, and S. G. Withers, A new generation of specific Trypanosoma cruzi trans-sialidase inhibitors, Angew Chem Int Ed Engl, vol.47, pp.2700-2703, 2008.
URL : https://hal.archives-ouvertes.fr/pasteur-02554112

H. Jamaluddin, P. Tumbale, S. G. Withers, K. R. Acharya, and K. Brew, Conformational changes induced by binding UDP-2F-galactose to alpha-1,3 galactosyltransferase -implications for catalysis, J Mol Biol, vol.369, pp.1270-1281, 2007.