A. Rosenberg and C. Schengrund, Sialidases, Biological Role of Sialic Acid, pp.295-359, 1976.

H. Faillard, The early history of sialic acids, Trends Biochem. Sci, vol.14, pp.237-241, 1989.

R. Schauer, Achievements and challenges of sialic acid research, Glycoconjugate J, vol.17, pp.485-499, 2000.

A. Varki, Sialic acids as ligands in recognition phenomena, FASEB J, vol.11, pp.248-255, 1997.

T. Miyagi, K. Konno, Y. Emor, H. Kawasaki, K. Suzuki et al., Molecular cloning and expression of cDNA encoding rat skeletal muscle cytosolic sialidase, J. Biol. Chem, vol.268, pp.26435-26440, 1993.

M. Y. Chou, S. C. Li, and Y. T. Li, Cloning and expression of sialidase L, a NeuAc-alpha-(2-3)Galspecific sialidase from the leech, Macrobdella decora, J. Biol. Chem, vol.271, pp.19219-19224, 1996.

T. Corfield, Bacterial sialidases: roles in pathogenicity and nutrition, Glycobiology, vol.2, pp.509-521, 1992.

G. Taylor, Sialidases: structures, biological significance and therapeutic potential, Curr. Opin. Struct. Biol, vol.6, pp.830-837, 1996.

J. O. Previato, A. F. Andrade, M. C. Pessolani, and L. Mendonca-previato, Incorporation of sialic acid into Trypanosoma cruzi macromolecules. A proposal for a new metabolic route, Mol. Biochem. Parasitol, vol.16, pp.85-96, 1985.

A. J. Parodi, G. D. Pollevick, M. Mautner, A. Buschiazzo, D. O. Sanchez et al., Identification of the gene(s) coding for the trans-sialidase of Trypanosoma cruzi, EMBO J, vol.11, pp.1705-1710, 1992.
URL : https://hal.archives-ouvertes.fr/hal-02554055

L. C. Pontes-de-carvalho, S. Tomlinson, F. Vandekerckhove, E. J. Bienen, and A. B. Clarkson, Characterization of a novel transsialidase of Trypanosoma brucei procyclic trypomastigotes and identification of procyclin as the main sialic acid acceptor, J. Exp. Med, vol.177, pp.465-474, 1993.

S. Schenkman, D. Eichinger, M. E. Pereira, and V. Nussenzweig, Structural and functional properties of Trypanosoma trans-sialidase, Annu. Rev. Microbiol, vol.48, pp.499-523, 1994.

A. C. Frasch, Functional diversity in the transsialidase and mucin families in Trypanosoma cruzi, Parasitol. Today, vol.16, pp.282-286, 2000.

S. Schenkman, J. Man-shiow, G. W. Hart, and V. Nussenzweig, A novel cell surface transsialidase of Trypanosoma cruzi generates a stagespecific epitope required for invasion of mammalian cells, Cell, vol.65, pp.1117-1125, 1991.

S. Schenkman, M. A. Ferguson, N. Heise, M. L. Cardoso-de-almeida, R. A. Mortara et al., Mucin-like glycoproteins linked to the membrane by glycosylphosphatidyl-inositol anchor are the major acceptors of sialic acid in a reaction catalyzed by trans-sialidase in metacyclic forms of Trypanosoma cruzi, Mol. Biochem. Parasitol, vol.59, pp.293-304, 1993.

M. L. Cremona, O. Campetella, D. O. Sanchez, and A. C. Frasch, Enzymically inactive members of the trans-sialidase family from Trypanosoma cruzi display b-galactose binding activity, Glycobiology, vol.9, pp.581-587, 1999.

E. C. Grisard, M. Steindel, A. A. Guarneri, I. Eger-mangrich, D. A. Campbell et al., Characterization of Trypanosoma rangeli strains isolated in Central and South America: an overview, Mem. Inst. Oswaldo Cruz, vol.94, pp.203-209, 1999.

F. Guhl, L. Hudson, C. J. Marinkelle, C. A. Jaramillo, and D. Bridge, Clinical Trypanosoma rangeli infection as a complication of Chagas' disease, Parasitology, vol.94, pp.475-484, 1987.

L. Hudson, F. Guhl, N. Sanchez, D. Bridge, C. A. Jaramillo et al., Longitudinal studies of the immune response of Colombian patients infected with Trypanosoma cruzi and Trypanosoma rangeli, Parasitology, vol.96, pp.449-460, 1988.

G. A. Cross and G. B. Takle, The surface trans-sialidase family of Trypanosoma cruzi, Annu. Rev. Microbiol, vol.47, pp.385-411, 1993.

M. E. Pereira and D. Moss, Neuraminidase activity in Trypanosoma rangeli, Mol. Biochem. Parasitol, vol.15, pp.95-104, 1985.

G. Reuter, R. Schauer, R. Prioli, and M. E. Pereira, Isolation and properties of a sialidase from Trypanosoma rangeli, Glycoconjugates, vol.4, pp.339-348, 1987.

A. Buschiazzo, O. D. Campetella, and A. C. Frasch, Trypanosoma rangeli sialidase: cloning, expression and similarity to T, 1997.
URL : https://hal.archives-ouvertes.fr/pasteur-02554085

, Glycobiology, vol.7, pp.1167-1173

L. C. Pontes-de-carvalho, S. Tomlinson, and V. Nussenzweig, Trypanosoma rangeli sialidase lacks trans-sialidase activity, Mol. Biochem. Parasitol, vol.62, pp.19-26, 1993.

A. Buschiazzo, G. A. Tavares, O. Campetella, S. Spinelli, M. L. Cremona et al., Structural basis of sialyltransferase activity in trypanosomal sialidases, EMBO J, vol.19, pp.16-24, 2000.
URL : https://hal.archives-ouvertes.fr/pasteur-02554089

A. Buschiazzo, M. F. Amaya, M. L. Cremona, A. C. Frasch, and P. M. Alzari, The crystal structure and mode of action of trans-sialidase, a key enzyme in Trypanosoma cruzi pathogenesis, Mol. Cell, vol.10, pp.757-768, 2002.
URL : https://hal.archives-ouvertes.fr/pasteur-02554093

W. T. Burmeister, B. Henrissat, C. Bosso, S. Cusack, and R. W. Ruigrok, Influenza B virus neuraminidase can synthesize its own inhibitor, Structure, vol.1, pp.19-26, 1993.
URL : https://hal.archives-ouvertes.fr/hal-00310603

N. R. Taylor and M. Von-itzstein, Molecular modeling studies on ligand-binding to sialidase from influenza virus and the mechanism of catalysis, J. Med. Chem, vol.37, pp.616-624, 1994.

S. Crennell, E. Garman, W. Graeme-laver, E. Vimr, and G. Taylor, Crystal structure of Vibrio cholerae neuraminidase reveals dual lectin-like domains in addition to the catalytic domain, Structure, vol.2, pp.535-544, 1994.

Y. Luo, S. C. Li, M. Y. Chou, Y. T. Li, and M. Luo, The crystal structure of an intramolecular trans-sialidase with a NeuAca2 ! 3Gal specificity, Structure, vol.6, pp.521-530, 1998.

M. E. Pereira, S. Mejia, E. Ortega-barria, D. Matzilevich, and R. P. Prioli, The Trypanosoma cruzi neuraminidase contains sequences similar to bacterial neuraminidases, YWTD repeats of the low density lipoprotein receptor, and type III modules of fibronectin, J. Exp. Med, vol.174, pp.179-191, 1991.

L. E. Smith and D. Eichinger, Directed mutagenesis of the Trypanosoma cruzi trans-sialidase enzyme identifies two domains involved in its sialyltransferase activity, Glycobiology, vol.7, pp.445-451, 1997.

A. R. Todeschini, L. Mendonça-previato, J. O. Previato, A. Varki, and H. Van-halbeek, Transsialidase from Trypanosoma cruzi catalyzes sialoside hydrolysis with retention of configuration, Glycobiology, vol.10, pp.213-221, 2000.

M. L. Cremona, D. O. Sanchez, A. C. Frasch, and O. Campetella, A single tyrosine differentiates active and inactive Trypanosoma cruzi trans-sialidases, 1995.

, Gene, vol.160, pp.123-128

M. Von-itzstein, W. Wu, G. B. Kok, M. S. Pegg, J. C. Dyason et al., Rational design of potent sialidase-based inhibitors of influenza virus replication, Nature, vol.363, pp.418-423, 1993.

M. J. Bamford, J. C. Pichel, W. Husaman, B. Patel, R. Storer et al., Synthesis of 6-carbon, 7-carbon and 8-carbon sugar analogs of potent antiinfluenza 2,3-didehydro-2,3-dideoxy-N-acetylneuraminic acid derivatives, J. Chem. Soc. Perkin Trans, vol.9, pp.1181-1187, 1995.

S. Crennell, T. Takimoto, A. Portner, and G. Taylor, Crystal structure of the multifunctional paramyxovirus hemagglutinin-neuraminidase, Nature Struct. Biol, vol.7, pp.1068-1074, 2000.

G. Paris, M. L. Cremona, M. F. Amaya, A. Buschiazzo, S. Giambiagi et al., Probing molecular function of trypanosomal sialidases: single point mutations can change substrate specificity and increase hydrolytic activity, Glycobiolology, vol.11, pp.305-311, 2001.
URL : https://hal.archives-ouvertes.fr/pasteur-02554090

A. K. Chong, M. S. Pegg, N. R. Taylor, and M. Von-itzstein, Evidence for a sialosyl cation transition-state complex in the reaction of sialidase from influenza virus, Eur. J. Biochem, vol.207, pp.335-343, 1992.

J. N. Varghese, J. L. Mckimm-breschkin, J. B. Caldwell, A. A. Kortt, and P. M. Colman, The structure of the complex between influenza virus neuraminidase and sialic acid, the viral receptor, Proteins: Struct. Funct. Genet, vol.14, pp.327-332, 1992.

G. Davies, M. L. Sinnott, and S. G. Withers, Glycosyl transfer, Comprehensive Biological Catalysis (Sinnott, M. L, vol.1, pp.119-208, 1998.

K. D. Tartof and C. A. Hobbs, Improved media for growing plasmid and cosmid clones, Bethesda Res. Lab. Focus, vol.6, pp.12-16, 1987.

Z. Otwinowski and W. Minor, Processing of X-ray diffraction data collected in oscillation mode, Methods Enzymol, vol.276, pp.307-325, 1997.

, The CCP4 suite: programs for protein crystallography, Collaborative Computational Project, vol.50, issue.4, pp.760-763, 1994.

T. A. Jones, J. Y. Zou, S. W. Cowan, and M. Kjeldgaard, Improved methods for binding protein models in electron density maps and the location of errors in these models, Acta Crystallog. sect. A, vol.47, pp.110-119, 1991.

G. N. Murshudov, A. A. Vagin, A. Lebedev, K. S. Wilson, and E. J. Dodson, Efficient anisotropic refinement of macromolecular structures using FFT, 1999.

, Acta Crystallog. sect. D, vol.55, pp.247-255

V. S. Lamzin and K. S. Wilson, Automated refinement of protein molecules. Acta Crystallog. sect, 1993.

J. Navaza, AMoRe: an automated package for molecular replacement, Acta Crystallog. sect. A, vol.50, pp.157-163, 1994.

R. A. Laskowski, M. W. Macarthur, D. S. Moss, and J. M. Thornton, PROCHECK: a program to check the stereochemical quality of protein structures, J. Appl. Crystallog, vol.26, pp.283-291, 1993.

P. J. Kraulis, MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures, J. Appl. Crystallog, vol.24, pp.946-950, 1991.

D. E. Mcree, XtalView/Xfit: a versatile program for manipulating atomic coordinates and electron density, J. Struct. Biol, vol.125, pp.156-165, 1992.

E. A. Merritt and D. J. Bacon, Raster3D photorealistic molecular graphics, Methods Enzymol, vol.277, pp.505-524, 1997.

S. J. Crennell, E. F. Garman, C. Philippon, A. Vasella, W. Graeme-laver et al., The structures of Salmonella typhimurium LT2 neuraminidase and its complexes with three inhibitors at high resolution, J. Mol. Biol, vol.259, pp.264-280, 1996.

A. Gaskell, S. Crennell, and G. Taylor, The three domains of a bacterial sialidase: a b-propeller, an immunoglobulin module and a galactose-binding jelly-roll, Structure, vol.3, pp.1197-1205, 1995.

A. T. Brü-nger, Free R value: a novel statistical quantity for assessing the accuracy of crystal structures, Nature, vol.355, pp.472-474, 1992.