C. S. Bond, Y. Zhang, M. Berriman, M. L. Cunningam, A. H. Fairlamb et al., Crystal structure of Trypanosoma cruzi trypanothione reductase in complex with trypanothione, and the structure-based discovery of new natural product inhibitors, Structure Fold Des, vol.7, pp.81-89, 1999.

P. Borst and A. H. Fairlamb, Surface receptors and transporters of Trypanosoma brucei, Annu. Rev. Microbiol, vol.52, pp.745-778, 1998.

M. P. Bousquet, R. M. Willemot, P. Monsan, and E. Boures, Enzymatic synthesis of alkyl-alpha-glucoside catalyzed by a thermostable alphatransglucosidase in solvent-free organic medium, Appl. Microbiol. Biotechnol, vol.50, pp.167-173, 1998.

M. Bradley, U. S. Bucheler, and C. T. Walsh, Redox enzyme engineering: conversion of human glutathione reductase into a trypanothione reductase, Biochemistry, vol.30, pp.6124-6127, 1991.

A. Buschiazzo, O. Campetella, and A. C. Frasch, Trypanosoma rangeli sialidase: cloning, expression and similarity to T. cruzi trans-sialidase, Glycobiology, vol.7, pp.1167-1173, 1997.
URL : https://hal.archives-ouvertes.fr/pasteur-02554085

A. Buschiazzo, G. A. Tavares, O. Campetella, S. Spinelli, M. L. Cremona et al., Structural basis of sialyltransferase activity in trypanosomal sialidases, EMBO J, vol.19, pp.16-24, 2000.
URL : https://hal.archives-ouvertes.fr/pasteur-02554089

M. C. Cazzulo-franke, J. Vernal, J. J. Cazzulo, and V. Nussenzweig, The NAD-linked aromatic alpha-hydroxy acid dehydrogenase from Trypanosoma cruzi. A new member of the cytosolic malate dehydrogenases group without malate dehydrogenase activity, Eur. J. Biochem, vol.266, pp.903-910, 1999.

A. K. Chong, M. S. Pegg, N. R. Taylor, and M. Von-itzstein, Evidence for a sialosyl cation transition-state complex in the reaction of sialidase from influenza virus, Eur. J. Biochem, vol.207, pp.335-343, 1992.

M. Y. Chou, S. C. Li, and Y. T. Li, Cloning and expression of sialidase L, a NeuAc ? 2-3Gal-specific sialidase from the leech, Macrobdella decora, J. Biol. Chem, vol.271, pp.19219-19224, 1996.

P. M. Colman, J. N. Varghese, and W. G. Laver, Structure of the catalytic and antigenic sites in influenza virus neuraminidase, Nature, vol.303, pp.41-44, 1983.

M. L. Cremona, D. O. Sanchez, A. C. Frasch, and O. Campetella, A single tyrosine differentiates active and inactive Trypanosoma cruzi transsialidases, Gene, vol.160, pp.123-128, 1995.

S. Crennell, E. Garman, W. Graeme-laver, E. Vimr, T. et al., Crystal structure of Vibrio cholerae neuraminidase reveals dual lectin-like domains in addition to the catalytic domain, Structure, vol.2, pp.535-544, 1994.

S. J. Crennell, E. F. Farman, G. Laver, W. Vimr, E. R. Taylor et al., Crystal structure of a bacterial sialidase (from Salmonella typhimurium LT2) shows the same fold as an influenza virus neuraminidase, Proc. Natl Acad. Sci. USA, vol.90, pp.9852-9856, 1993.

S. J. Crennell, E. F. Garman, G. Laver, W. Vimr, E. R. Philipon et al., The structures of Salmonella typhimurium LT2 neuraminidase and its complexes with three inhibitors at high resolution, J. Mol. Biol, vol.259, pp.264-280, 1996.

M. A. Ferguson, The surface glycoconjugates of trypanosomatid parasites, Phil. Trans. R. Soc. Lond. B, vol.352, pp.1295-1302, 1997.

M. A. Ferrero-garcía, S. E. Trombetta, D. O. Sánchez, A. Reglero, A. C. Frasch et al., The action of Trypanosoma cruzi trans-sialidase on glycolipids and glycoproteins, Eur. J. Biochem, vol.213, pp.765-771, 1993.

A. C. Frasch, Functional diversity in members of the trans-sialidase and mucin families in Trypanosoma cruzi, Parasitol. Today, vol.16, pp.282-286, 2000.

A. A. Holder, Proteins on the surface of the malaria parasite and cell invasion, Parasitology, vol.108, pp.5-18, 1994.

L. L. Hoyer, P. Roggentin, R. Schauer, and E. R. Vimr, Purification and properties of cloned Salmonella typhimurium LT2 sialidase with virus-typical kinetic preference for sialyl ?2-3 linkages, J. Biochem, vol.110, pp.462-467, 1991.

D. E. Koshland, Stereochemistry and the mechanism of enzymatic reactions, Biol. Rev, vol.28, pp.416-436, 1953.

Y. Luo, S. C. Li, Y. T. Li, and M. Luo, The 1.8 Å structures of leech intramolecular trans-sialidase complexes: evidence of its enzymatic mechanism, J. Mol. Biol, vol.285, pp.323-332, 1999.
URL : https://hal.archives-ouvertes.fr/in2p3-01061037

H. D. Ly and S. G. Withers, Mutagenesis of glycosidases, Annu. Rev. Biochem, vol.68, pp.487-522, 1999.

L. D. Powell and G. W. Hart, Quantitation of picomole levels of N-acetyland N-glycolylneuraminic acids by a HPLC-adaptation of the thiobarbituric acid assay, Anal. Biochem, vol.157, pp.179-185, 1986.

M. Ribeirao, V. L. Pereira-chioccola, D. Eichinger, M. M. Rodrigues, and S. Schenkman, Temperature differences for trans-glycosylation and hydrolysis reaction reveal an acceptor binding site in the catalytic mechanism of Trypanosoma cruzi trans-sialidase, Glycobiology, vol.7, pp.1237-1246, 1997.

E. L. Romero, M. F. Pardo, S. Porro, and A. , Sialic acid measurement by a modified Aminoff method: a time-saving reduction in 2-thiobarbituric acid concentration, J. Biochem. Biophys. Meth, vol.35, pp.129-134, 1997.

P. Rudenko, M. Cross, and P. Borst, Changing the end: antigenic variation orchestrated at the telomeres of African trypanosomes, Trends Microbiol, vol.6, pp.113-116, 1998.

G. Sarkar and S. S. Sommer, The "megaprimer" method of site-directed mutagenesis, Biotechniques, vol.8, pp.404-407, 1990.

S. Schenkman, J. Man-shiow, G. H. Hart, and V. Nussenzweig, A novel cell surface trans-sialidase of Trypanosoma cruzi generates a stage-specific epitope required for invasion in mammalian cells, Cell, vol.65, pp.1117-1125, 1991.

S. Schenkman, L. Pontes-de-carvalho, and V. Nussenzweig, Trypanosoma cruzi trans-sialidase and neuraminidase activities can be mediated by the same enzymes, J. Exp. Med, vol.175, pp.567-575, 1992.

P. Scudder, J. P. Doom, M. Chuenkova, I. D. Manger, and M. E. Pereira, Enzymatic characterization of beta-D-galactoside ? 2, 3-transsialidase from Trypanosoma cruzi, J. Biol. Chem, vol.268, pp.9886-9891, 1993.

L. E. Smith and D. Eichinger, Directed mutagenesis of the Trypanosoma cruzi trans-sialidase enzyme identifies two domains involved in its sialyltransferase activity, Glycobiology, vol.7, pp.445-451, 1997.

V. S. Stoll, S. J. Simpson, R. L. Krauth-siegel, C. T. Walsh, and E. F. Pai, Glutathione reductase turned into trypanothione reductase: structural analysis of an engineered change in substrate specificity, Biochemistry, vol.36, pp.6437-6447, 1997.

G. Taylor, L. Dineley, M. Glowka, and G. Laver, Crystallization and preliminary crystallographic study of neuraminidase from Micromonospora viridifaciens, J. Mol. Biol, vol.225, pp.1135-1136, 1992.

A. Todeschini, L. Mendonça-previato, J. Previato, A. Varki, and H. Halbeek, Trans-sialidase from Trypanosoma cruzi catalyzes sialoside hydrolysis with retention of configuration, Glycobiology, vol.10, pp.213-221, 2000.

S. J. Turco and A. Descoteaux, The lipophosphoglycan of Leishmania parasites, Annu. Rev. Microbiol, vol.46, pp.65-94, 1992.

F. Vandekerckhove, S. Schenkman, L. Pontes-de-carvalho, S. Tomlinson, M. Kiso et al., Substrate specificity of the Trypanosoma cruzi trans-sialidase, Glycobiology, vol.2, pp.541-548, 1992.

J. N. Varghese, W. G. Laver, and P. M. Colman, Structure of the influenza virus glycoprotein antigen neuraminidase at 2.9 Å resolution, Nature, vol.303, pp.35-40, 1983.

G. M. Watt, P. A. Lowden, and S. L. Flitsch, Enzyme-catalyzed formation of glycosidic linkages, Curr. Opin. Struct. Biol, vol.7, pp.652-660, 1998.