R. W. Titball and E. D. Williamson, Vaccination against bubonic and pneumonic plague, Vaccine, vol.19, issue.30, pp.4175-4184, 2001.

S. J. Schrag and P. Wiener, Emerging infectious diseases: what are the relative roles of ecology and evolution?, Trends Evol. Ecol. (TREE), vol.10, pp.319-324, 1995.

M. Galimand, A. Guiyoule, G. Gerbaud, B. Rasoamanana, S. Chanteau et al., Multidrug resistance in Yersinia pestis mediated by a transferable plasmid, N Engl J Med, vol.337, issue.10, pp.677-80, 1997.

T. V. Inglesby, D. T. Dennis, D. A. Henderson, J. G. Bartlett, M. S. Ascher et al., Plague as a biological weapon: medical and public health management. Working Group on Civilian Biodefense, Jama, vol.283, issue.17, pp.2281-90, 2000.

R. D. Perry and J. D. Fetherston, Yersinia pestis--etiologic agent of plague, Clin Microbiol Rev, vol.10, issue.1, pp.35-66, 1997.

S. M. Vidal, D. Malo, J. F. Marquis, and P. Gros, Forward genetic dissection of immunity to infection in the mouse, Annu Rev Immunol, vol.26, pp.81-132, 2008.

R. Pollitzer and . W. Plague, Monograph Series 22. World Health Organization, 1954.

Y. H. Congleton, C. R. Wulff, E. J. Kerschen, and S. C. Straley, Mice naturally resistant to Yersinia pestis Delta pgm strains commonly used in pathogenicity studies, Infect Immun, vol.74, issue.11, pp.6501-6505, 2006.

J. K. Turner, J. L. Xu, and R. I. Tapping, Substrains of 129 mice are resistant to Yersinia pestis KIM5: implications for interleukin-10-deficient mice, Infect Immun, vol.77, issue.1, pp.367-73, 2009.

J. K. Turner, M. M. Mcallister, J. L. Xu, and R. I. Tapping, Resistance of BALB/cJ mice to Yersinia pestis maps to the major histocompatibility complex of chromosome 17, Infect Immun, 2008.

J. M. Doll, P. S. Zeitz, P. Ettestad, A. L. Bucholtz, T. Davis et al., Cat-transmitted fatal pneumonic plague in a person who traveled from Colorado to Arizona, Am. J. Trop. Med. Hyg, vol.51, issue.1, pp.109-114, 1994.

C. Buchrieser, M. Prentice, and E. Carniel, The 102-Kilobase Unstable Region Of Yersinia Pestis Comprises a High-Pathogenicity Island Linked to a Pigmentation Segment Which Undergoes Internal Rearrangement, J. Bacteriol, vol.180, issue.9, pp.2321-2329, 1998.

W. W. Lathem, S. D. Crosby, V. L. Miller, and W. E. Goldman, Progression of primary pneumonic plague: a mouse model of infection, pathology, and bacterial transcriptional activity, Proc Natl Acad Sci, vol.102, issue.49, pp.17786-91, 2005.

S. Leary, K. F. Griffin, E. E. Galyov, J. Hewer, E. D. Williamson et al., Yersinia outer proteins (YOPS) E, K and N are antigenic but non-protective compared to V antigen, in a murine model of bubonic plague, Microb. Pathog, vol.26, issue.3, pp.159-169, 1999.

L. E. Lindler, M. S. Klempner, and S. C. Straley, Yersinia pestis pH-6 Antigen -Genetic, Biochemical, and Virulence Characterization of a Protein Involved in the Pathogenesis of Bubonic Plague, Infect. Immun, vol.58, issue.8, pp.2569-2577, 1990.

T. C. Leal-balbino, N. C. Leal, M. Do-nascimento, M. De-oliveira, V. Balbin et al., The pgm locus and pigmentation phenotype in Yersinia pestis, Genetics Mol. Biol, vol.29, issue.1, pp.126-131, 2006.

T. Mashimo, M. Lucas, D. Simon-chazottes, M. P. Frenkiel, X. Montagutelli et al., A nonsense mutation in the gene encoding 2'-5'-oligoadenylate synthetase/L1 isoform is associated with West Nile virus susceptibility in laboratory mice, Proc Natl Acad Sci U S A, vol.99, issue.17, pp.11311-11317, 2002.

R. Kapetanovic and J. M. Cavaillon, Early events in innate immunity in the recognition of microbial pathogens, Expert Opin Biol Ther, vol.7, issue.6, pp.907-925, 2007.

O. Dienz and M. Rincon, The effects of IL-6 on CD4 T cell responses, Clin Immunol, vol.130, issue.1, pp.27-33, 2009.

S. A. Dalrymple, L. A. Lucian, R. Slattery, T. Mcneil, D. M. Aud et al., Interleukin-6-deficient mice are highly susceptible to Listeria monocytogenes infection: correlation with inefficient neutrophilia, Infect Immun, vol.63, issue.6, pp.2262-2270, 1995.

R. A. Leblanc, L. Pesnicak, E. S. Cabral, M. Godleski, and S. E. Straus, Lack of interleukin-6 (IL-6) enhances susceptibility to infection but does not alter latency or reactivation of herpes simplex virus type 1 in IL-6 knockout mice, J Virol, vol.73, issue.10, pp.8145-51, 1999.

J. Da-silva-correia, K. Soldau, U. Christen, P. S. Tobias, and R. J. Ulevitch, Lipopolysaccharide is in close proximity to each of the proteins in its membrane receptor complex. transfer from CD14 to TLR4 and MD-2, J Biol Chem, vol.276, issue.24, pp.21129-21164, 2001.

F. Bihl, L. Lariviere, S. T. Qureshi, L. Flaherty, and D. Malo, LPS-hyporesponsiveness of mnd mice is associated with a mutation in Toll-like receptor 4, Genes Immun, vol.2, issue.1, pp.56-65, 2001.
URL : https://hal.archives-ouvertes.fr/hal-02526241

S. W. Montminy, N. Khan, S. Mcgrath, M. J. Walkowicz, F. Sharp et al., Virulence factors of Yersinia pestis are overcome by a strong lipopolysaccharide response, Nat Immunol, vol.7, issue.10, pp.1066-73, 2006.

L. W. Kummer, F. M. Szaba, M. A. Parent, J. J. Adamovicz, J. Hill et al., Antibodies and cytokines independently protect against pneumonic plague, Vaccine, vol.26, issue.52, pp.6901-6908, 2008.

R. Nakajima and R. R. Brubaker, Association between virulence of Yersinia pestis and suppression of gamma interferon and tumor necrosis factor alpha, Infect Immun, vol.61, issue.1, pp.23-31, 1993.

S. E. Girardin, I. G. Boneca, L. A. Carneiro, A. Antignac, M. Jehanno et al., Nod1 detects a unique muropeptide from gram-negative bacterial peptidoglycan, Science, vol.300, issue.5625, pp.1584-1591, 2003.

J. Viala, C. Chaput, I. G. Boneca, A. Cardona, S. E. Girardin et al., Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island, Nat Immunol, vol.5, issue.11, pp.1166-74, 2004.

L. H. Travassos, L. A. Carneiro, S. E. Girardin, I. G. Boneca, R. Lemos et al., Nod1 participates in the innate immune response to Pseudomonas aeruginosa, J Biol Chem, vol.280, issue.44, pp.36714-36722, 2005.

L. Bourhis, L. Magalhaes, J. G. Selvanantham, T. Travassos, L. H. Geddes et al., Role of Nod1 in mucosal dendritic cells during Salmonella pathogenicity island 1-independent Salmonella enterica serovar Typhimurium infection, Infect Immun, vol.77, issue.10, pp.4480-4486, 2009.

X. Zhou, Q. Chen, J. Moore, J. K. Kolls, S. Halperin et al., Critical role of the interleukin-17/interleukin-17 receptor axis in regulating host susceptibility to respiratory infection with Chlamydia species, Infect Immun, vol.77, issue.11, pp.5059-70, 2009.

J. K. Kolls and A. Linden, Interleukin-17 family members and inflammation, Immunity, vol.21, issue.4, pp.467-76, 2004.

A. N. Sieve, K. D. Meeks, S. Bodhankar, S. Lee, J. K. Kolls et al., A novel IL-17-dependent mechanism of cross protection: respiratory infection with mycoplasma protects against a secondary listeria infection, Eur J Immunol, vol.39, issue.2, pp.426-464, 2009.

P. L. Simonian, C. L. Roark, F. Wehrmann, A. M. Lanham, W. K. Born et al., IL-17A-expressing T cells are essential for bacterial clearance in a murine model of hypersensitivity pneumonitis, J Immunol, vol.182, issue.10, pp.6540-6549, 2009.

P. Ye, F. H. Rodriguez, S. Kanaly, K. L. Stocking, J. Schurr et al., Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense, J Exp Med, vol.194, issue.4, pp.519-546, 2001.

L. Riol-blanco, V. Lazarevic, A. Awasthi, M. Mitsdoerffer, B. S. Wilson et al., IL-23 receptor regulates unconventional IL-17-producing T cells that control bacterial infections, J Immunol, vol.184, issue.4, pp.1710-1730

J. L. Guénet and F. Bonhomme, Wild mice: an ever-increasing contribution to a popular mammalian model, Trends Genet, vol.19, issue.1, pp.24-31, 2003.

L. Dejager, C. Libert, and X. Montagutelli, Thirty years of Mus spretus: a promising future, Trends Genet, vol.25, issue.5, pp.234-275, 2009.

K. W. Broman, H. Wu, S. Sen, and G. A. Churchill, R/qtl: QTL mapping in experimental crosses, Bioinformatics, vol.19, issue.7, pp.889-90, 2003.