J. E. Baker, R. M. Boudreau, A. P. Seitz, C. C. Caldwell, E. Gulbins et al., Sphingolipids and innate immunity: a new approach to infection in the post-antibiotic era?, Surg. Infect, vol.19, pp.792-803, 2018.

J. Becam, T. Walter, A. Burgert, J. Schlegel, M. Sauer et al., Antibacterial activity of ceramide and ceramide analogs against pathogenic, Neisseria. Sci. Rep, vol.7, p.17627, 2017.

K. A. Becker, B. Fahsel, H. Kemper, J. Mayeres, C. Li et al., Staphylococcus aureus alpha-toxin disrupts endothelial-cell tight junctions via acid sphingomyelinase and ceramide, Infect. Immun, vol.86, pp.606-623, 2018.

C. Bedia, T. Levade, and P. Codogno, Regulation of autophagy by sphingolipids, Anticancer Agents Med. Chem, vol.11, pp.844-853, 2011.

C. Cazalet, C. Rusniok, H. Bruggemann, N. Zidane, A. Magnier et al., Evidence in the Legionella pneumophila genome for exploitation of host cell functions and high genome plasticity, Nat. Genet, vol.36, pp.1165-1173, 2004.

A. E. Cremesti, F. M. Goni, and R. Kolesnick, Role of sphingomyelinase and ceramide in modulating rafts: do biophysical properties determine biologic outcome?, FEBS Lett, vol.531, pp.47-53, 2002.

N. Cukkemane, F. J. Bikker, K. Nazmi, H. S. Brand, J. Sotres et al., Anti-adherence and bactericidal activity of sphingolipids against Streptococcus mutans, Eur. J. Oral Sci, vol.123, pp.221-227, 2015.

R. Custodio, C. J. Mclean, A. E. Scott, J. Lowther, A. Kennedy et al., Characterization of secreted sphingosine-1-phosphate lyases required for virulence and intracellular survival of Burkholderia pseudomallei, Mol. Microbiol, vol.102, pp.1004-1019, 2016.

R. J. Dubos, The effect of sphingomyelin on the growth of tubercle bacilli, J. Exp. Med, vol.88, pp.73-79, 1948.

T. Eierhoff, B. Bastian, R. Thuenauer, J. Madl, A. Audfray et al., A lipid zipper triggers bacterial invasion, Proc. Natl. Acad. Sci. U.S.A, vol.111, pp.12895-12900, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01066717

C. A. Elwell, S. Jiang, J. H. Kim, A. Lee, T. Wittmann et al., Chlamydia trachomatis co-opts GBF1 and CERT to acquire host sphingomyelin for distinct roles during intracellular development, PLoS Pathog, vol.7, p.1002198, 2011.

P. Escoll, M. Rolando, L. Gomez-valero, and C. Buchrieser, From amoeba to macrophages: exploring the molecular mechanisms of Legionella pneumophila infection in both hosts, Curr. Top. Microbiol. Immunol, vol.376, pp.1-34, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01334244

M. Faulstich, F. Hagen, E. Avota, V. Kozjak-pavlovic, A. C. Winkler et al., Neutral sphingomyelinase 2 is a key factor for PorB-dependent invasion of Neisseria gonorrhoeae, Cell. Microbiol, vol.17, pp.241-253, 2015.

C. L. Fischer, K. S. Walters, D. R. Drake, D. R. Blanchette, D. V. Dawson et al., Sphingoid bases are taken up by Escherichia coli and Staphylococcus aureus and induce ultrastructural damage, Skin Pharmacol. Physiol, vol.26, pp.36-44, 2013.

N. J. Foegeding, R. R. Caston, M. S. Mcclain, M. D. Ohi, and T. L. Cover, An overview of Helicobacter pylori VacA toxin biology, Toxins, vol.8, p.173, 2016.

V. Ganesan, M. N. Perera, D. Colombini, D. Datskovskiy, K. Chadha et al., Ceramide and activated Bax act synergistically to permeabilize the mitochondrial outer membrane, Apoptosis, vol.15, pp.553-562, 2010.

S. K. Garg, E. Volpe, G. Palmieri, M. Mattei, D. Galati et al., Sphingosine 1-phosphate induces antimicrobial activity both in vitro and in vivo, J. Infect. Dis, vol.189, pp.2129-2138, 2004.

L. Gomez-valero and C. Buchrieser, Genome dynamics in Legionella: the basis of versatility and adaptation to intracellular replication, Cold Spring Harb. Perspect. Med, vol.3, p.9993, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01333411

L. Gomez-valero, C. Buchrieser, F. M. Goni, A. , and A. , Intracellular parasitism, the driving force of evolution of Legionella pneumophila and the genus Legionella, Genes Immun, vol.20, pp.38-46, 2002.

B. Gonzalez-zorn, G. Dominguez-bernal, M. Suarez, M. T. Ripio, Y. Vega et al., The smcL gene of Listeria ivanovii encodes a sphingomyelinase C that mediates bacterial escape from the phagocytic vacuole, 1999.

, Mol. Microbiol, vol.33, pp.510-523

H. Grassme, B. Henry, R. Ziobro, K. A. Becker, J. Riethmuller et al., beta1-integrin accumulates in cystic fibrosis luminal airway epithelial membranes and decreases sphingosine, promoting bacterial infections, Cell Host Microbe, vol.21, 2017.

H. Grassme, V. Jendrossek, A. Riehle, G. Von-kurthy, J. Berger et al., Host defense against Pseudomonas aeruginosa requires ceramide-rich membrane rafts, Nat. Med, vol.9, pp.322-330, 2003.

H. Grundmann, M. Aires-de-sousa, J. Boyce, and E. Tiemersma, Emergence and resurgence of meticillin-resistant Staphylococcus aureus as a public-health threat, Lancet, vol.368, pp.68853-68856, 2006.

E. Gulbins, S. Dreschers, B. Wilker, and H. Grassme, Ceramide, membrane rafts and infections, J. Mol. Med, vol.82, pp.357-363, 2004.

V. R. Gupta, B. A. Wilson, and S. R. Blanke, Sphingomyelin is important for the cellular entry and intracellular localization of Helicobacter pylori VacA, Cell. Microbiol, vol.12, pp.1517-1533, 2010.

T. Hackstadt, D. D. Rockey, R. A. Heinzen, and M. A. Scidmore, Chlamydia trachomatis interrupts an exocytic pathway to acquire endogenously synthesized sphingomyelin in transit from the Golgi apparatus to the plasma membrane, EMBO J, vol.15, pp.964-977, 1996.

Y. A. Hannun and L. M. Obeid, Principles of bioactive lipid signalling: lessons from sphingolipids, Nat. Rev. Mol. Cell Biol, vol.9, pp.139-150, 2008.

C. R. Hauck, H. Grassme, J. Bock, V. Jendrossek, K. Ferlinz et al., Acid sphingomyelinase is involved in CEACAM receptor-mediated phagocytosis of Neisseria gonorrhoeae, FEBS Lett, vol.478, pp.1851-1853, 2000.

A. Herrera, K. Kulhankova, V. K. Sonkar, S. Dayal, A. J. Klingelhutz et al., Staphylococcal beta-toxin modulates human aortic endothelial cell and platelet function through sphingomyelinase and biofilm ligase activities, vol.8, pp.273-290, 2017.

T. Hla, Physiological and pathological actions of sphingosine 1-phosphate, Semin. Cell Dev. Biol, vol.15, 2004.

F. C. Huang, De Novo sphingolipid synthesis is essential for Salmonellainduced autophagy and human beta-defensin 2 expression in intestinal epithelial cells, Gut Pathog, vol.8, p.5, 2016.

W. Jiang and B. Ogretmen, Autophagy paradox and ceramide, Biochim. Biophys. Acta, vol.1841, pp.783-792, 2014.

S. Keitsch, J. Riethmuller, M. Soddemann, C. Sehl, B. Wilker et al., Pulmonary infection of cystic fibrosis mice with Staphylococcus aureus requires expression of alpha-toxin, Biol. Chem, vol.399, pp.1203-1213, 2018.

A. A. Khweek, K. Caution, A. Akhter, B. A. Abdulrahman, M. Tazi et al., A bacterial protein promotes the recognition of the Legionella pneumophila vacuole by autophagy, Eur. J. Immunol, vol.43, pp.1333-1344, 2013.

S. Koch-edelmann, S. Banhart, E. M. Saied, L. Rose, L. Aeberhard et al., The cellular ceramide transport protein CERT promotes Chlamydia psittaci infection and controls bacterial sphingolipid uptake, Cell. Microbiol, vol.19, p.12752, 2017.

M. J. Lee, J. R. Van-brocklyn, S. Thangada, C. H. Liu, A. R. Hand et al., Sphingosine-1-phosphate as a ligand for the G protein-coupled receptor EDG-1, Science, vol.279, pp.1552-1555, 1998.

J. Lennings, T. E. West, and S. Schwarz, The burkholderia type VI secretion system 5: composition, regulation and role in virulence, Front. Microbiol, vol.9, p.3339, 2018.

C. Li, Y. Wu, A. Riehle, V. Orian-rousseau, Y. Zhang et al., Regulation of Staphylococcus aureus infection of macrophages by CD44, reactive oxygen species, and acid sphingomyelinase, Antioxid. Redox Signal, 2017.

C. A. Lingwood, B. Binnington, A. Manis, and D. R. Branch, Globotriaosyl ceramide receptor function -where membrane structure and pathology intersect, FEBS Lett, vol.584, pp.1879-1886, 2010.

C. Luberto, M. J. Stonehouse, E. A. Collins, N. Marchesini, S. El-bawab et al., Purification, characterization, and identification of a sphingomyelin synthase from Pseudomonas aeruginosa. PlcH is a multifunctional enzyme, J. Biol. Chem, vol.278, pp.32733-32743, 2003.

M. Maceyka and S. Spiegel, Sphingolipid metabolites in inflammatory disease, Nature, vol.510, pp.58-67, 2014.

A. Manago, K. A. Becker, A. Carpinteiro, B. Wilker, M. Soddemann et al., Pseudomonas aeruginosa pyocyanin induces neutrophil death via mitochondrial reactive oxygen species and mitochondrial acid sphingomyelinase, Antioxid. Redox Signal, vol.22, pp.1097-1110, 2015.

A. R. Melton-celsa, Shiga Toxin (Stx) classification, structure, and function, Microbiol. Spectr, vol.2, 2014.

M. Nagahama, M. Takehara, T. Takagishi, S. Seike, K. Miyamoto et al., cellular uptake of clostridium botulinum C2 toxin requires acid sphingomyelinase activity, Infect. Immun, vol.85, pp.966-982, 2017.

H. Nakayama, H. Kurihara, Y. S. Morita, T. Kinoshita, L. Mauri et al., Lipoarabinomannan binding to lactosylceramide in lipid rafts is essential for the phagocytosis of mycobacteria by human neutrophils, Sci. Signal, vol.9, p.101, 2016.

H. Nakayama, H. Ogawa, K. Takamori, and K. Iwabuchi, GSL-enriched membrane microdomains in innate immune responses, Arch. Immunol. Ther. Exp, vol.61, pp.217-228, 2013.

W. F. Nieuwenhuizen, S. Van-leeuwen, F. Gotz, and M. R. Egmond, Synthesis of a novel fluorescent ceramide analogue and its use in the characterization of recombinant ceramidase from Pseudomonas aeruginosa PA01, Chem. Phys. Lipids, vol.114, pp.206-213, 2002.

T. Lomma, M. Gomez-valero, L. Buchrieser, and C. , Molecular mimicry: an important virulence strategy employed by Legionella pneumophila to subvert host functions, Frontiers in Cell and Developmental Biology | www.frontiersin.org Nora, vol.4, pp.691-701, 2009.

M. Oda, M. Hashimoto, M. Takahashi, Y. Ohmae, S. Seike et al., Role of sphingomyelinase in infectious diseases caused by Bacillus cereus, PLoS One, vol.7, p.38054, 2012.

J. Ohanian and V. Ohanian, Sphingolipids in mammalian cell signalling, Cell. Mol. Life. Sci, vol.58, pp.2053-2068, 2001.

N. Okino and M. Ito, Molecular mechanism for sphingosine-induced Pseudomonas ceramidase expression through the transcriptional regulator SphR, Sci. Rep, vol.6, p.38797, 2016.

N. Okino, M. Tani, S. Imayama, and M. Ito, Purification and characterization of a novel ceramidase from Pseudomonas aeruginosa, J. Biol. Chem, vol.273, pp.14368-14373, 1998.

K. A. Owen, C. B. Meyer, A. H. Bouton, and J. E. Casanova, Activation of focal adhesion kinase by Salmonella suppresses autophagy via an Akt/mTOR signaling pathway and promotes bacterial survival in macrophages, PLoS Pathog, vol.10, p.1004159, 2014.

H. Peng, C. Li, S. Kadow, B. D. Henry, J. Steinmann et al., Acid sphingomyelinase inhibition protects mice from lung edema and lethal Staphylococcus aureus sepsis, EMBO Mol. Med, vol.93, pp.1205-1214, 2014.

H. Prakash, A. Luth, N. Grinkina, D. Holzer, R. Wadgaonkar et al., Sphingosine kinase-1 (SphK-1) regulates Mycobacterium smegmatis infection in macrophages, PLoS One, vol.5, p.10657, 2010.

M. Rolando, P. Escoll, and C. Buchrieser, Legionella pneumophila restrains autophagy by modulating the host's sphingolipid metabolism, Autophagy, vol.12, pp.1053-1054, 2016.

M. Rolando, P. Escoll, T. Nora, J. Botti, V. Boitez et al., Legionella pneumophila S1P-lyase targets host sphingolipid metabolism and restrains autophagy, Proc. Natl. Acad. Sci. U.S.A, vol.113, pp.1901-1906, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01376135

T. J. Rowbotham, Preliminary report on the pathogenicity of Legionella pneumophila for freshwater and soil amoebae, J. Clin. Pathol, vol.33, pp.1179-1183, 1980.

K. M. Scanlon, C. Skerry, and N. H. Carbonetti, Novel therapies for the treatment of pertussis disease, Pathog. Dis, vol.73, p.74, 2015.

M. Schramm, J. Herz, A. Haas, M. Krönke, and O. Utermöhlen, Acid sphingomyelinase is required for efficient phago-lysosomal fusion, Cell Microbiol, vol.10, pp.1839-1853, 2008.

C. Schwan, T. Nolke, A. S. Kruppke, D. M. Schubert, A. E. Lang et al., Cholesterol-and sphingolipid-rich microdomains are essential for microtubule-based membrane protrusions induced by clostridium difficile transferase (CDT), J. Biol. Chem, vol.286, pp.29356-29365, 2011.

A. P. Seitz, H. Grassme, M. J. Edwards, Y. Pewzner-jung, and E. Gulbins, Ceramide and sphingosine in pulmonary infections, Biol. Chem, vol.396, pp.611-620, 2015.

A. A. Shamseddine, M. V. Airola, and Y. A. Hannun, Roles and regulation of neutral sphingomyelinase-2 in cellular and pathological processes, Adv. Biol. Regul, vol.57, pp.24-41, 2015.

A. Simonis, S. Hebling, E. Gulbins, S. Schneider-schaulies, and A. Schubert-unkmeir, Differential activation of acid sphingomyelinase and ceramide release determines invasiveness of Neisseria meningitidis into brain endothelial cells, PLoS Pathog, vol.10, p.1004160, 2014.

A. Speer, J. Sun, O. Danilchanka, V. Meikle, J. L. Rowland et al., Surface hydrolysis of sphingomyelin by the outer membrane protein Rv0888 supports replication of Mycobacterium tuberculosis in macrophages, 2015.

, Mol. Microbiol, vol.97, pp.881-897

M. Steinert, K. Heuner, C. Buchrieser, C. Albert-weissenberger, and G. Glockner, Legionella pathogenicity: genome structure, regulatory networks and the host cell response, Int. J. Med. Microbiol, vol.297, pp.577-587, 2007.

S. Tavakoli-tabazavareh, A. Seitz, P. Jernigan, C. Sehl, S. Keitsch et al., Lack of sphingosine causes susceptibility to pulmonary staphylococcus aureus infections in cystic fibrosis, Cell. Physiol. Biochem, vol.38, pp.2094-2102, 2016.

V. Teichgraber, M. Ulrich, N. Endlich, J. Riethmuller, B. Wilker et al., Ceramide accumulation mediates inflammation, cell death and infection susceptibility in cystic fibrosis, Nat. Med, vol.14, pp.382-391, 2008.

C. R. Thompson, S. S. Iyer, N. Melrose, R. Vanoosten, K. Johnson et al., Sphingosine kinase 1 (SK1) is recruited to nascent phagosomes in human macrophages: inhibition of SK1 translocation by Mycobacterium tuberculosis, J. Immunol, vol.174, pp.3551-3561, 2005.

S. Y. Tong, J. S. Davis, E. Eichenberger, T. L. Holland, and V. G. Fowler, Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management, Clin. Microbiol. Rev, vol.28, pp.603-661, 2015.

O. Utermöhlen, U. Karow, J. Löhler, and M. Krönke, Severe impairment in early host defense against Listeria monocytogenes in mice deficient in acid sphingomyelinase, J. Immunol, vol.170, pp.2621-2628, 2003.

Y. Wu, C. Li, A. Riehle, B. Pollmeier, E. Gulbins et al., Mycobacterial infection is promoted by neutral sphingomyelinase 2 regulating a signaling cascade leading to activation of beta1-integrin, Cell. Physiol. Biochem, vol.51, pp.1815-1829, 2018.

T. Yamaji and K. Hanada, Sphingolipid metabolism and interorganellar transport: localization of sphingolipid enzymes and lipid transfer proteins, Traffic, vol.16, pp.101-122, 2015.

S. Zheng, T. Eierhoff, S. Aigal, A. Brandel, R. Thuenauer et al., The Pseudomonas aeruginosa lectin LecA triggers host cell signalling by glycosphingolipid-dependent phosphorylation of the adaptor protein CrkII, Biochim. Biophys. Acta Mol. Cell. Res, vol.1864, pp.1236-1245, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02378055