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a b s t r a c t

Wastewaters (WW) are important sources for the dissemination of antimicrobial resistance (AMR) into
the environment. Hospital WW (HWW) contain higher loads of micro-pollutants and AMR markers than
urban WW (UWW). Little is known about the long-term dynamics of H and U WW and the impact of
their joined treatment on the general burden of AMR. Here, we characterized the resistome, microbiota
and eco-exposome signature of 126 H and U WW samples treated separately for three years, and then
mixed, over one year. Multi-variate analysis and machine learning revealed a robust signature for each
WW with no significant variation over time before mixing, and once mixed, both WW closely resembled
Urban signatures. We demonstrated a significant impact of pharmaceuticals and surfactants on the
resistome and microbiota of H and U WW. Our results present considerable targets for AMR related risk
assessment of WW.
© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The natural environment and its biodiversity serve as a wide
reservoir of genetic determinants implicated in resistance to anti-
microbial compounds (Allen et al., 2010; Canton, 2009). Human
activity has a significant impact on the terrestrial and aquatic mi-
crobial ecosystems through chemical pollutants that are spread via
urban, agricultural and industrial waste and which pose an
important selective pressure for antimicrobial resistance (AMR)
(Flandroy et al., 2018). For instance, urban and hospital wastewaters
G, Antibiotic-Resistant Gene;
netic Element; WW, Waste-
stewater.
Anti-Microbiens, CBRS, 1 rue
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(UWW and HWW) contain a high diversity of antimicrobial resis-
tance genes (ARGs) and chemicals (Buelow et al., 2018; Jin et al.,
2018; Manaia et al., 2018; Wang et al., 2018). It is generally
accepted that the implementation of efficient wastewater treat-
ment plants (WWTP) is essential in order to reduce the amounts of
chemicals, ARGs and antibiotic resistant bacteria (ARBs) that reach
the environment (Buelow et al., 2018; Chonova et al., 2016; Larsson
et al., 2018). Despite the global reduction of ARBs, ARGs, and
chemical compounds such as antibiotics (ABs), biocides and heavy
metals through WW treatment, effluents from urban, hospital and
industrial wastewater that are re-introduced into the environment,
still contain moderate levels of those ‘contaminants’ (Manaia et al.,
2018; Pallares-Vega et al., 2019; Raheem et al., 2018; Zhu et al.,
2017). HWWs have been reported to contain particularly high
amounts of ARGs, ARBs and ABs (Buelow et al., 2018; Rodriguez-
Mozaz et al., 2015; Wang et al., 2018). It has been debated
whether HWW contributes significantly to the load of ARGs in the
UWW systems, and whether separate treatment for HWWs should
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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be applied (Buelow et al., 2018; Chonova et al., 2016; Lienert et al.,
2011). Recent work has shown that HWWhas limited impact on the
relative levels of ARGs and mobile genetic elements (MGEs) asso-
ciated with ARGs, like integrons, in hospital receiving urban
wastewater (WW) (Buelow et al., 2018; Pallares-Vega et al., 2019;
Stalder et al., 2014). However, most studies usually analyzed a
limited number of samples and yet, longitudinal studies that
monitor WW dynamics are so far lacking, which limits the possi-
bility of assessing the risk for AMR mediated through WW.

We collected 126 WW samples (UWW, HWW and mixed WW)
in a French city during a period of approximately four years: 34
months with separate treatments for H and U WW (applying the
conventional secondary (activated sludge) treatment process) and
11 months with H and U WW mixed 1:2 (HWW:UWW) into one
system. From those we investigated the dynamics and relationship
of the respective resistome and microbiota with the measured eco-
exposome (pharmaceuticals, mainly antibiotics; surfactants and
heavy metals). Multi-variate analysis and machine learning were
employed to evaluate signatures of the resistome, microbiota and
eco-exposome of HWW compared to UWW.
2. Materials and methods

2.1.1. Sampling and study design

126 Urban and hospital wastewater (UWWand HWW) samples
were collected in Scientrier (Bellecombe WWTP), Haute-Savoie,
France (Chonova et al., 2018) as part of the multi-disciplinary
project SIPIBEL (Chonova et al., 2018). The study site was imple-
mented as an observatory for untreated and treated H and U WW
and to evaluate their impact (during separate and subsequently
mixed treatment) on the environment (e.g. the effluent receiving
river). The CHAL hospital (Centre Hospitalier Alpes L�eman) opened
in February 2012 and includes 450 beds (140 m3/d), whereas the
Bellecombe WWTP was collecting UWW of approximately 21.000
inhabitant equivalents (5200 m3/d). For more details of the SIPIBEL
project, study set up, WWT and sample collection refer to Chonova
et al., 2018 andWiest et al. (Chonova et al., 2018; Wiest et al., 2018),
and to Fig. 1. Samples were collected in monthly intervals
Fig. 1. Sampling site. Samples were collected in monthly intervals (untreated and treated sa
March 2012 to December 2014, UWW and HWW were treated by separate wastewater trea
UWW was mixed into the HWW (1:2 ratio HWW:UWW) and added to the separate HWW
effluent receiving river up (river upstream) and downstream (river downstream sampling p
2013 (January, February, November, and December).
(untreated and treated samples) by flow proportional sampling,
from March 2012 through November 2015 (Chonova et al., 2018).
FromMarch 2012 to December 2014, UWWandHWWwere treated
separately applying the same conventional (activated sludge)WWT
(Chonova et al., 2018; Wiest et al., 2018). Then, in the period from
January 2015 through November 2015, UWW was mixed into the
HWW (1:2 ratio HWW:UWW, the ratio was fixed by a local oper-
ating constraint) and added to the separate HWW treatment line
resulting in a controlled mixed WW (MWW)(Chonova et al., 2018).
In addition, 12 water samples of the effluent receiving river up
(river upstream) and downstream (river downstream sampling
point 1 and 2) of the effluent release pipes have been collected
during the winter months of 2013 (January, February, November,
and December).
2.2. DNA extraction/sample preparation

Water samples were filtered for microorganisms, using a
filtration ramp (Sartorius, G€ottingen, Germany), on sterile 47 mm
diameter filter with pore size of 0.45 mm (Sartorius, G€ottingen,
Germany). Microorganisms were recovered from filters and subject
to DNA extraction for downstream analysis, using the Power water
DNA extraction kit (MoBio Laboratories Inc., Carlsbad, CA, USA).
DNA concentration was determined by Qubit Fluoremetric Quan-
titation (Thermo fisher scientific, Waltham, MA USA) assays ac-
cording the manufacturer’s instructions. All DNA samples were
diluted or concentrated to a final concentration of 10 ng/ml for
downstream qPCR and 16S rRNA analysis.
2.3.1. High-throughput qPCR

Nanolitre-scale quantitative PCRs to quantify levels of genes that
confer resistance to antimicrobials and heavy metals were per-
formed as described previously (Buelow et al., 2018, 2017), with
some modifications in the collection of primers. The primer se-
quences and their targets are provided in the supplementary data
(Supplementary Table 1). In total we targeted 88 individual resis-
tance genes conferring resistance to antibiotics, quaternary
ammonium compounds, or heavy metals, grouped into 16
mples) by flow proportional sampling, fromMarch 2012 through November 2015. From
tment plants (WWTPs). During the period from January 2015 through November 2015,
treatment line resulting in mixed WW (MWW). In addition, 12 water samples of the
oint 1 and 2) of the effluent release pipes were collected during the winter months of
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resistance gene classes. The genes targeted include ARGs that are
most commonly detected in the gut microbiota of healthy in-
dividuals (Forslund et al., 2013; Hu et al., 2013), clinically relevant
ARGs (including genes encoding extended spectrum b-lactamases
(ESBLs), carbapenemases, and vancomycin resistance), and heavy
metal and quaternary ammonium compound resistance genes
suggested to favor cross and co e selection for ARGs in the envi-
ronment (Gnanadhas et al., 2013; Pal et al., 2015). We also targeted
genetic elements as important transposase gene families (Zhu et al.,
2013) and class 1, 2 and 3 integron integrase genes (by primers
described previously (Barraud et al., 2010)), that are important
vectors for ARGs in the clinics and often used as proxy for
anthropogenic pollution (Gillings et al., 2015). Finally, we targeted
the bacterial 16S rRNA gene by universal primers. Gene targets and
grouping of genes into gene classes/according to function are
detailed in Supplementary Tables 1 and 2 Primer design and vali-
dation prior and after Biomark analysis has been done as described
earlier (Buelow et al., 2018, 2017). Real-Time PCR analysis was
performed using the 96.96 BioMark™ Dynamic Array for Real-Time
PCR (Fluidigm Corporation, San Francisco, CA, U.S.A) as described
previously (Buelow et al., 2018, 2017). Thermal cycling and real-
time imaging was performed at the Plateforme G�enomique GeT e

INRA Transfert (https://get.genotoul.fr/en/), and Ct values were
extracted using the BioMark Real-Time PCR analysis software.

2.3.2. Calculation of normalized abundance and cumulative
abundance

Calculations for normalized and cumulative abundance of in-
dividual genes and allocated gene classes was done as described
previously (Buelow et al., 2018, 2017). Specifically, normalized
abundance of resistance genes was calculated relative to the
abundance of the 16S rRNA gene (2∧(-(CTARG e CT16S rRNA)).
Cumulative abundance of each resistance gene class was calculated
based on the sum of the normalized abundance (2∧(-(CTARG e

CT16S rRNA)) of all individual genes detected within a class, for
each sample. The differences in cumulative abundance over the
indicated time periods and sample locations (untreated and treated
hospital and urban wastewaters, 2012e2014; up and downstream
river samples, 2013; untreated and treated mixed wastewaters,
2015) are shown as an averaged fold-change ± standard deviation.
The non-parametric Mann-Whitney test was used to test for sig-
nificance; p values were corrected for multiple testing by the
Benjamin-Hochberg procedure (Benjamini and Hochberg, 1995)
with a false discovery rate of 0.05. Averaged normalized abundance
data for allocated gene classes is provided in Supplementary
Table 3.

2.4. qPCR to determine absolute copy numbers of 16S rRNA genes
(bacterial biomass)

The qPCRs for the determination of 16S rRNA gene copy
numbers per liters of water as a proxy for the bacterial biomass was
performed as described previously by Stalder et. al. (Stalder et al.,
2014).

2.5. 16S rRNA gene sequencing and sequence data pre-processing

Extracted DNA samples for 16S rRNA sequencing were prepared
following a dual barcoded two-step PCR procedure for amplicon
sequencing for Illumina. Primers of the first PCR step included
universal CS1 and CS2 tags targeting the V4 region of the hyper-
variable region of the 16S rRNA gene using the 16SrRNA primer
sequences of the earth microbiota project (http://press.igsb.anl.
gov/earthmicrobiota/protocols-and-standards/16s/). Samples were
sequenced following the Illumina protocol for a 2 � 301 MiSeq run
(Illumina, Inc., San Diego, CA). Sequence reads from the Illumina
MiSeq were demultiplexed and classified in the following manner:
The Python application dbcAmplicons (https://github.com/
msettles/dbcAmplicons) was used to identify and assign reads to
the appropriate sample by both expected barcode and primer se-
quences. Barcodes were allowed to have at most 1 mismatch
(hamming distance) and primers were allowed to have at most 4
mismatches (Levenshtein distance) as long as the final 4 bases of
the primer matched the target sequence perfectly. Reads were then
trimmed of their primer sequence and merged into a single
amplicon sequence using the application FLASH (Magoc and
Salzberg, 2011).

2.5.1. 16S rRNA data analysis
Illumina MiSeq forward and reverse reads were processed using

the MASQUE pipeline (https://github.com/aghozlane/masque).
Briefly, raw reads are filtered and combined followed by der-
eplication. Chimera removal and clustering are followed by taxo-
nomic annotation of the resulting OTUs by comparison to the SILVA
database. A BIOM file is generated that combines both OTU taxo-
nomic assignment and the number of matching reads for each
sample. Relative abundance levels form bacterial taxa (Order level)
were obtained and analyzed. The obtained relative abundance OTU
tables (Order level) were analyzed with Microsoft excel
(Supplementary Table 4), multi-variate analysis package (see
below) and by means of a machine learning approach employing a
random forest algorithm (see below).

2.6. Chemical analysis

All chemical data measured here and used for analysis where
extracted from the SIPIBEL database. Solid-phase extraction (SPE)
and liquid chromatography coupled with tandem mass spectrom-
etry (LC-MS/MS) were used to measure the antibiotics ciprofloxa-
cin, sulfamethoxazole and vancomycin and the pharmaceutical
carbamazepine as detailed elsewhere (Wiest et al., 2018). Heavy
metals (Zn, Cu, Ni, Pb, Cr, Gd, Hg, As and Cd) were measured with
inductively coupled plasma combined with atomic emission spec-
troscopy (ICP-AES). Concentration of surfactants (anionic, cationic
and non-ionic surfactants) were measured following standard
methods approved by the French organization of standardization
AFNOR as described by Wiest et. al. (Wiest et al., 2018).

2.7. Multivariate analyses

Multivariate statistical techniques were used to test the influ-
ence of waste water treatment or sampling time (independent
variables) on the microbiota and the resistome (dependent vari-
ables) of the different sample groups (urban, hospital, mixed),
including all individual genes and genes allocated into gene classes
in two independent datasets. Statistically significant influence of
the treatment or the sampling time on the microbiota and the
resistome were assessed by Redundancy Analysis (RDA) with 499
Monte Carlo permutations. For testing the influence of sampling
time, we used sampling year or season as independent variables,
and all different sample groups together (i.e., to potentially identify
general patterns influencing all groups at the same time), and
individually, as dependent variables. Such analysis revealed the
percentage of variance that is explained by sampling time or WW
treatment in each case, and whether the influence of the inde-
pendent variables is statistically significant or not. The relationship
between the resistome and the microbiota and the measured
chemicals in the different raw water samples (eco-exposome) was
visualized by means of Principal Component Analysis (PCA) biplots.

https://get.genotoul.fr/en/
http://press.igsb.anl.gov/earthmicrobiota/protocols-and-standards/16s/
http://press.igsb.anl.gov/earthmicrobiota/protocols-and-standards/16s/
https://github.com/msettles/dbcAmplicons
https://github.com/msettles/dbcAmplicons
https://github.com/aghozlane/masque
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Moreover, the influence of the measured chemicals (eco-expo-
some) on themicrobiota and resistomewas statistically assessed by
RDA. A variation partitioning analysis was performed to assess
which group of chemicals (Metals, Pharmaceuticals, Surfactants)
explains the largest share of the variation of the microbiota and
resistome datasets, and to explorewhether the interactive effects of
the groups of chemicals would have a larger influence on those
datasets than the individual groups themselves. All multivariate
analyses were performed with the Canoco v5.0 software (Ter Braak
and Smilauer, 2012), using a significance level of 0.05.

2.8. Machine learning

A Random Forest Algorithm (RFA) was used in order to predict a
response variable (wastewater sample type (urban, hospital or
mixed)) of each sample independently, using measurements on
individual gene, gene class and microbiota level (predictor vari-
ables). To run the RFA the R-package randomForest was used:
Breiman and Cutler’s Random Forests for Classification and
Regression, a software package for the R-statistical environment
(Breiman, 2001). In summary, the RFA follows the pseudo-steps: (I)
the response variable and predictor variables are chosen by the
user; (II) a predefined number of independent bootstrap samples
are drawn from the dataset with replacement, and a classification
tree is fit to each sample containing roughly 2/3 of the data, for
which predictor variable selection on each node split in the tree is
conducted using only a small random subset of predictor variables;
(III) the complete set of trees, one for each bootstrap sample,
composes the random forest (RF), from which the status (classifi-
cation) of the response variable is predicted as an average (majority
vote) of the predictions of all trees. Compared to single classifica-
tion trees, RFA increases prediction accuracy, since the ensemble of
slight different classification results adjusts for the instability of the
individual trees and avoids data overfitting (Hastie et al., 2009). The
Mean Decrease Accuracy (MDA), or Breiman-Cutler importance,
was employed as a measure of predictor variable importance, for
which classification accuracy after data permutation of a predictor
variable is subtracted from the accuracy without permutation, and
averaged over all trees in the RF to give an importance value [2]. It
should be noted that since all predictor variables were of numeric
nature, using RFA is equivalent to regression over classification
trees. For the results presented here and in supplementary text,
only the 2.5% of top RFA scores were considered (as presented by
the resulting MDA distribution of all predictor variables), thus
selecting the subset of predictor variables which appear statistically
more informative than expected in the background of all predictor
variables (i.e. we assume that 95% of the RFA scores fall between the
2.5th and 97.5th percentiles, as done elsewhere (Lourenco et al.,
2017)).

3. Results

3.1. HWW and UWW resistome and microbiota signatures

We evaluated the resistome and microbiota dynamics of
monthly WW (N ¼ 126) and river (N ¼ 12) samples. H and U WW
samples were treated separately through 2012 and 2014, and were
mixed at a ratio of 1:2 (HWW:UWW) throughout the year 2015
(Fig. 1). H and U WW samples exhibited a distinct signature with
respect to the proportional makeup of their resistome (Fig. 2a) and
microbiota (Fig. 2b). Analyzing the data with a Random Forest
machine learning approach showed that the distinct H and U WW
signatures resulted in a high prediction accuracy. When using the
resistome as predictor (on the level of gene classes), 93.5% and
96.7% of untreated HWWand UWW samples respectively, could be
correctly classified (Supplementary Fig. 1a). We further analyzed
the data on the individual gene level to increase resolution of the
machine learning approach. Using individual genes resulted in
similarly high predictions (93.5% prediction for untreated HWW
and 100% prediction for untreated UWW) (Supplementary Fig. 1b).
Similarly, when using the microbiota, 96.8% of untreated HWWand
89% of untreated UWW samples were correctly classified
(Supplementary Fig. 1c).

For the treated H and U WW the machine learning prediction
accuracy was lower compared to the untreated WW sources but
still considerably high for all predictor levels and in particular for
the microbiota (�80%) (Supplementary Fig. 2).

For the MWW overall classification success was lower
(Supplementary Figs. 1 and 2), given a much lower sample size and
likely due to the mixing of the two wastewater sources hampering
clear signatures.

3.2. Temporal dynamics of H and U WW

Redundancy analysis (RDA) was performed to assess putative
significant influences of time on the variability of resistome and
microbiota compositions using sampling year or season as inde-
pendent variables (Monte Carlo (MC) permutations (n ¼ 499)).
Analysis was carried out for all different sample groups together
(untreated U, H, M WW and treated U, H, M WW) to potentially
identify general patterns influencing all groups at the same time.
The same analysis was also performed per individual sample group
(untreated and treated H, U and M WW alone, respectively).

Over the first 3 years before mixing of untreated HWW and
UWW, neither year (p ¼ 0.6 resistome and p ¼ 0.4 microbiota
respectively) nor season (p ¼ 0.9 and p ¼ 0.3) had a significant
impact on the resistome (resistance gene classes) and microbiota
composition of the WW (Supplementary Table 5a). However, by
analyzing the sample groups separately, a yearly and seasonal
impact on the level of individual resistance genes in HWW was
demonstrated (p ¼ 0.004 year, p ¼ 0.032 season; Supplementary
Table 5b). Redundancy analysis revealed the relationship between
individual genes and gene classes with seasons, pointing towards a
correlation of increased normalized abundance of individual genes
and gene classes detected during summer season (Supplementary
Figs. 3a and 4). The fact that the hospital was only installed in
February 2012 (Chonova et al., 2018) may explain why the year
2012 is particular for HWW resistome, with overall lower
normalized abundance of the resistome and no obvious trend to-
wards the summer season in 2012. After HWW and UWW mixing
(in 2015), no significant variation for the resistome and microbiota
composition throughout the seasons could be observed considering
all sample groups (untreated MWW, HWW and UWW; p ¼ 0.6
resistome and p ¼ 0.07 microbiota respectively; Supplementary
Table 5a).

For treated WW, the analysis exhibited more variation of the
resistome and microbiota composition compared to the untreated
sources over the years (2012e2014 for H and U WW; Fig. 2,
Supplementary Table 5c). Redundancy analysis revealed that in
particular the microbiota of treated H and U WW effluents varied
between the years (p ¼ 0.016 for all groups, p ¼ 0.024 for treated
HWW and p ¼ 0.006 for treated UWW, Supplementary Tables 5c
and 5d) while no significant seasonal impact could be observed.
The resistome varied between the years for treated HWW on both
the gene class and the individual gene levels (p ¼ 0.012 and
p ¼ 0.004, Supplementary Table 5d), whereas for the treated UWW
this variation was only significant on the individual gene level
(p ¼ 0.032). For the treated mixed WW (MWW), significant sea-
sonal variation was observed for the microbiota composition
(p ¼ 0.02), while for the resistome no significant variation could be



Fig. 2. Proportional abundance of the resistome and microbiota in untreated (R) and treated (T) HWW, UWW and MWW, as well as river samples up (Ri) and downstream
(Ri1 and Ri2) of the waste water release pipes throughout the sampling period (2012e2015). a: proportional abundance of resistome (ARG classes, heavy metals, integron
integrase genes and mobile genetic elements) for all samples. b: proportional abundance of the microbiota (displaying the 20 most abundant bacteria at the order level for all
samples, where “others” represents the percentage of the remaining taxa).
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observed (Supplementary Table 5d).

3.3. Human gut bacteria in HWW and UWW

The microbiota of the respective WWwas assessed by 16S rRNA
sequencing. We calculated the relative abundance of anaerobic
human gut bacteria, as well as Enterobacteriales, since many of
these Gram-negative bacteria are also pathogens. The orders
Clostridiales, Bifidobacteriales and Bacteroidales which represent
the most important and abundant anaerobic human gut bacteria
(Costea et al., 2018; Rajilic-Stojanovic and de Vos, 2014), were
grouped together and are referred to as anaerobic human gut
bacteria. Untreated HWW contained significantly higher levels of
anaerobic human gut bacteria (38% ± 11 standard deviation) and
Enterobacteriales (2% ± 1.5) compared to all other samples (Fig. 3a).
Interestingly, anaerobic human gut bacteria and Enterobacteriales
are comparable in their relative abundance for untreated UWWand
MWW, indicating a significant dilution effect when mixing UWW
with HWW (Fig. 3b) on the monitored human gut microbiota
markers inWW. TheWW treatment allowed a significant (p < 0.05)
decrease of the relative abundance of these orders for HWW and
UWW (Fig. 3) whereas the reduction for MWW was only margin-
ally significant (p ¼ 0.05) (Fig. 3b).

3.4. The untreated HWW, UWW and MWW resistome

To verify that the differences we observed for the ARGs/MGEs
between effluents were not due to variations in the bacterial
biomass, we assessed the absolute copy numbers of 16S rRNA genes
per liter of water, and showed that the bacterial biomass was
comparable for the untreated WW sources (HWW, UWW and
MWW) (Supplementary Fig. 5). Ratios of HWW over UWW and
HWW over MWW were calculated based on the averaged
cumulative abundance of the resistome in untreated HWW and
UWW (Table 1).

The untreated HWW contained significantly more gene classes
compared to the untreated UWW, between 3 (transposase genes)
and 161-fold (qnr genes encoding quinolone resistance) higher (p
values � 0.004; Table 1). When WW were mixed at the experi-
mental ratio of 1:2 (HWW:UWW), the untreated MWW contained
significantly less resistance gene classes compared to untreated
HWW, between 3 and 22-fold lower (p values� 0.03). Interestingly,
there was no significant difference for the genes encoding resis-
tance to macrolides for both HWW over UWW and HWW over
MWW comparisons (Table 1, Fig. 4). The only resistance gene
significantly lower in HWW compared to UWW or MWW
(p < 0.0001), was the streptogramin resistance gene vatB. ThemecA
gene encoding resistance to methicillin was undetectable in all
UWW and in all but one MWW samples (Table 1).
3.5. Resistome before and after WW treatment

The absolute copy numbers of 16S rRNA genes per liter of water
for all WW sources decreased by 2e3 log after WW treatment
(Supplementary Fig. 5) indicating that secondary WW treatment
did reduce total bacterial loads in similar orders ofmagnitude in the
hospital and urban WW treatment plant. To estimate the impact of
WW treatment on the resistome, fold changes of normalized cu-
mulative abundance of untreated over treated H, U and M WW
were calculated. The normalized cumulative abundance of all gene
classes significantly decreased and was between 78 times (for
genes conferring resistance to quinolones) and 5 times (for genes
conferring resistance to QACs, sulphonamides and genes encoding
transposase genes) lower in the treated HWW compared to un-
treated HWW (p < 0.003) (Table 2; Fig. 4).When comparing un-
treated UWW to treated UWW, we showed a significant reduction



Fig. 3. Relative abundance of anaerobic human gut bacteria (Clostridiales, Bifidobacteriales and Bacteroidales) and Enterobactertiales. a: for untreated (n ¼ 21) and treated
HWW (n ¼ 19) and untreated (n ¼ 21) and treated (n ¼ 20) UWW, averaged over the numbers of samples collected for each sample group between March 2012 and December
2014 þ- standard deviation. b: for untreated (n ¼ 10) HWW, untreated (n ¼ 9) and treated (n ¼ 8) UWW and untreated (n ¼ 10) and treated (n ¼ 8) MWW samples (at the
experimental ratio of 1:2 HWW:UWW) averaged over the numbers of samples collected for each sample group between January 2015 and November 2015 þ- standard deviation.
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(p < 0.05) in the normalized cumulative abundance for nine
resistance gene classes with fold changes between 43 (for the
streptogramin resistance gene vatB) and three (for genes encoding
resistance to aminoglycosides) times (Table 2, Fig. 4). No significant
reduction in normalized abundance was observed after treatment
Table 1
Average fold changes for gene classes cumulative abundance of untreated HWWover UW
HWW over MWW (2015, significant differences indicated by asterisk *; p values � 0.0
normalized cumulative abundance values of individual gene classes for all samples be
changes were calculated for individually paired samples for each gene class/sample group
groups.

Gene classes conferring resistance to: Fold change untreated Hospita

chloramphenicol 84 (±93)*
aminoglycosides 43 (±31)*
bacitracin 8 (±13)*
beta-lactams 26 (±22)*
macrolides 1 (±1)
(multi-drug) Efflux 9 (±11)*
quinolones (qnr) 161 (±326)*
heavy metals 7 (±9)*
quaternary ammonium compounds (QACs) 18 (±14)*
vancomycin 12 (±35)*
tetracycline 4 (±3)*
polymixin 8 (±9)*
sulphonamides 19 (±12)*
methicillin NA (undetectable in UWW)
streptogramin 0.2 (±0.2)*
trimethoprim 8 (±6)*

Gene classes grouped according to function:
transposase genes (MGEs) 3 (±1)*
integron integrase genes 16 (±9)*
of UWW for gene classes conferring resistance to bacitracin, beta-
lactams, quinolones, heavy metals and quaternary ammonium
compounds, and for genes encoding integron integrases. Surpris-
ingly, sulphonamide resistance encoding genes were found to be
significantly enriched in normalized abundance after UWW
W (2012e2015; significant differences indicated by asterisk *; p values � 0.004) and
3) ± Standard Deviation. Significant differences were calculated by comparing the
longing to each sample group using the non-parametric Mann-Whitney test. Fold
. NA indicates that gene classes were undetectable in either one or both of the sample

l WW/Urban WW Fold change untreated Hospital WW/Mixed WW

13 (±11)*
8 (±6)*
7 (±4)*
9 (±6)*
0.6 (±0.3)
4 (±4)*
10 (±8)*
4 (±3)*
7 (±4)*
18 (±20)*
3 (±2)*
4 (±4)*
7 (±4)*
NA (undetectable in all but one MWW sample)
0.2 ((±0.2)*
5 (±3)*

2 (±1)
6 (±3)*



Fig. 4. Averaged normalized cumulative abundance of ARG classes, heavy metals, MGEs and integrons over all collected samples per sample type þ - standard deviation. a:
averaged normalized cumulative abundance of ARG classes, heavy metals, QACs, MGEs and integrase genes in untreated (n21) and treated HWW (n ¼ 19), untreated (n ¼ 21) and
treated (n ¼ 20) UWW averaged over the numbers of samples collected for each water type in the given time interval (March 2012eDecember 2014) þ- standard deviation. b:
averaged normalized cumulative abundance of ARG classes, heavy metals, QACs, MGEs and integrase genes in untreated (n ¼ 10) HWW, untreated (n ¼ 9) and treated (n ¼ 8) UWW
and untreated (n ¼ 10) and treated (n ¼ 8) MWW (at the experimental ratio 1:2 HWW:UWW) samples averaged over the numbers of samples collected for each sample group in the
given time interval (January 2015eNovember 2015) þ- standard deviation.

Table 2
Average fold changes for gene classes of untreatedWWover treated WW for H, U and MWW (p values � 0.03) ± Standard Deviation. * ¼ significantly lower;þ ¼ significantly
higher. Significant differences were calculated by comparing the normalized cumulative abundance values of individual gene classes for all samples belonging to each sample
group using the non-parametric Mann-Whitney test. Fold changes were calculated for individually paired samples for each gene class/sample group. Average fold
change ± Standard Deviation are depicted in the table for comparison. NA indicates that gene classes were undetectable in either one or both of the sample groups.

Gene classes conferring
resistance to:

Fold change H untreated WW/H treated WW Fold change U untreated WW/U treated WW Fold change M untreated WW/M treated
WW

chloramphenicol 34 (±47)* 5 (±12)* 16 (±27)*
aminoglycosides 15 (±14)* 3 (±5) * 7 (±10)*
bacitracin 12 (±30)* 1 (±2) 1 (±1)
beta-lactams 30 (±42) * 4 (±14) 10 (±21)
erythromycin (macrolides) 48 (±68)* 27 (±55)* 23 (þ17)*
(multi-drug) efflux 29 (±43)* 9 (±27)* 13 (±17)*
quinolones 78 (±123)* 3 (±5) 19 (±29)*
heavy metals 15 (±32) * 3 (±3) 2 (±2)
quaternary ammonium

compounds (QACs)
5 (±5) * 1 (±2) 2 (±2)

vancomycin NA (undetectable in all but one sample for
treated HWW)

NA (undetectable in all but one sample for
treated UWW)

NA (undetectable in all samples for treated
MWW)

tetracycline 51 (±77)* 13 (±40)* 6 (±5)
polymixin 29 (±52)* 5 (±12) * 7 (±7)*
sulphonamides 5 (±6)* 1 (±1)þ 2 (±1)
Streptogramin 17 (±43)* 43 (±77)* 41 (±20)*
methicillin NA (undetectable in all treated HWW

samples)
NA (undetectable in all treated UWW
samples)

NA (undetectable in all but one treated
MWW sample)

trimethoprim 66 (±101)* 9 (±28)* 6 (±7)*

Gene classes grouped according to function:
transposase genes (MGEs) 5 (±5)* 6 (±7)* 5 (±3)*
integron integrase genes 7 (±6)* 1 (±1) 3 (±4)*
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treatment (p < 0.05) (Table 2, Fig. 4). For MWW, a similar removal
efficacy as for UWW could be observed (Table 2, Fig. 4b), with
significant decrease for the normalized cumulative abundance of 10
gene classes and with fold changes between 41 (for the streptog-
ramin resistance gene vatB) and three (for the genes encoding
integron integrase genes) times. No significant decrease for gene
classes conferring resistance to bacitracin, beta-lactams, tetracy-
cline, heavy metals, QACs and sulphonamides could be detected.

3.6. Impact of treated hospital WW on the receiving river

We also analyzed 12 river samples up and downstream the
WWTPs to evaluate putatively associated risks with the release of
the treated WW into the effluent receiving river and downstream
environment (Supplementary Fig. 6). The resistome for the river
samples collected for the sites up (Ri) and downstream (Ri1 and
Ri2) of the effluent release pipes duringwinter season 2013was not
significantly different for either of the three sampling sites
(Supplementary Fig. 6). There was no significant difference of the
normalized abundance for any of the detected gene classes in the
river samples compared to treated UWW. On the contrary, the
normalized abundance of nine resistance gene classes including
genes encoding MGEs and integron integrase genes was signifi-
cantly lower (p < 0.04) in all river samples when compared to
treated HWW (Supplementary Fig. 6).

3.7. Correlation analysis between the eco-exposome and the
microbiome and resistome of hospital and urban WW

In order to estimate the eco-exposome in the WW, selected
pharmaceutical and chemical compounds including antibiotics,
surfactants and heavy metals were quantified in untreated WW
(Supplementary Table 6). The association between the resistome/
microbiota and the eco-exposome was visualized by means of
Principal Component Analysis (PCA) biplots. Here, HWWand UWW
form two distinct clusters, while the MWW clusters closely to the
UWW for both resistome andmicrobiota (Fig. 5a and b). Antibiotics,
non-ionic and cationic surfactants are closely associated with the
respective HWW resistome and microbiota (length of arrows),
while anionic surfactants and some metals are more associated
with the resistome and microbiota of the UWW (Fig. 5a and b).
Redundancy analysis (RDA) was performed to statistically asses the
association of the monitored eco-exposome with the variation of
the resistome and microbiota. The results of the Monte-Carlo per-
mutations indicated that the eco-exposome significantly influences
the resistome and microbiota (p-values 0.002).

Finally, a variation partitioning analysis was performed to study
which group of the measured compounds (heavy-metals, phar-
maceuticals, surfactants) might have a larger contribution on the
resistome and microbiota variation, and to explore whether the
interaction between these compounds has a stronger influence
than the individually grouped compounds. Pharmaceuticals (the
antibiotics ciprofloxacin, sulfamethoxazole and vancomycin, and
the neurological drug carbamazepine) aremore associatedwith the
variance for the resistome, while the surfactants are associated
with the variation for the microbiota (Fig. 5c and d). Finally, we
showed that the interaction between pharmaceuticals and surfac-
tants contributes more to the variability in the resistome than the
individual compounds alone (Fig. 5c and d). We also collected data
on the consumption of three antibiotics, ciprofloxacin, sulfameth-
oxazole and vancomycin, by the hospital pharmacy over the period
of 2012e2014, that were summarized here as gram per season
(Supplementary Table 7 and Supplementary Fig. 3c). The studied
hospital site has just been opened in the winter month of February
2012 which is probably why antibiotic consumption by the hospital
pharmacy was low during winter 2012. No obvious correlation
between summer peaks for the measured antibiotics in WW and
their respective consumption by the hospital pharmacywas shown.
(Supplementary Table 7 and Supplementary Table 8, and
Supplementary Figs. 3b and 3c).

4. Discussion

In the context of globally increasing AMR, wastewaters (WW)
have been identified as sources for the spread of AMR determinants
(ARB, ARGs, MGEs) and chemical pollutants (often pharmaceutical
residues) that may favor AMR selection during wastewater treat-
ment and in the receiving environment. In this study we thor-
oughly monitored the resistome and microbiota dynamics of
untreated and treated (applying conventional secondary WWT)
hospital and urban WW over four years throughout the seasons in
France. We identified distinct and robust resistome and microbiota
signatures, in particular for untreated HWW and UWW, indicating
that HWW and UWW form distinct and stable ecological niches
over time. Performing machine learning (ML) classified each of the
WW with high accuracy and revealed top predictive genes, gene
classes and taxa for the respective WW sources before and after
WW treatment (Supplementary Fig. 8). Interestingly, when
collapsing data-sets obtained from untreated and treated samples
of the respective WW sources, ML was able to predict HWW and
UWW in general with more than 93% certainty on all predictor
levels (individual genes, gene classes, taxa) (Supplementary Fig. 9).
These top 10 predictors for HWW and UWW provide considerable
marker gene classes, individual genes and taxa for the respective
WW sources that present targets for the monitoring and manage-
ment of HWW and UWW. For example, the streptogramin resis-
tance gene vatB, and the transposase gene ISS1N were significantly
more abundant in UWW compared to HWW, and seem to be spe-
cifically indicative for UWW (Supplementary Figs. 8 and 9).

Based on theML andmulti variate analysis, macrolide resistance
genes also contribute to the specific resistome signature for UWW
(Supplementary Figs. 8 and 9, Fig. 5a). Considering the fact that
macrolide and streptogramin antibiotics are more frequently pre-
scribed in the community compared to the hospital environment in
France could explain the high abundance of these gene classes in
UWW (Robert et al., 2012). The antibiotics ciprofloxacin, sulfa-
methoxazole and vancomycin were detected in higher concentra-
tions in HWW compared to UWW, which may point towards a
relationship of themeasured antibiotics and the detected resistome
in HWW (Fig. 5a and c). Interestingly, the qnr genes encoding
quinolone resistance in HWW were the ones with the highest fold
increase (161-fold) between HWW and UWW. As these genes are
located on plasmids, their higher abundance in HWW indirectly
reflects the likely abundance of bacteria harboring genetic ele-
ments involved in resistance dissemination as plasmids in HWW.
Indeed, qnr genes have been described mainly in Enterobacteriales
(Carattoli, 2009; Rozwandowicz et al., 2018) and we found that the
relative abundance of Enterobacteriales is higher in HWW than in
UWW (Fig. 3). The human gut microbiota is an important reservoir
for ARGs (Ruppe et al., 2018; Sommer et al., 2010) and recently
evidence-based data showed that the occurrence and abundance of
(human) fecal pollution correlates with high amounts of ARGs in
anthropogenically impacted environments (Karkman et al., 2019;
Su et al., 2017). The significant dilution of human gut bacteria in
MWW observed here, even with an increased proportional
contribution of HWW to UWW (HWW ~33.4%) compared to other
study sites (Buelow et al., 2018; Pallares-Vega et al., 2019; Stalder
et al., 2014), is hence likely to explain the significant reduction of
the abundance of gene classes after mixing HWW with UWW.

With respect to the reduction of normalized abundance of ARGs



Fig. 5. Principal component analysis showing the relationship between the eco-exposome (heavy metals, pharmaceuticals and surfactants) and the resistome (a) and
microbiota (b) of untreated HWW, UWW and MWW samples; and Venn diagrams showing the results of the variation partitioning analysis with the different measured
chemical classes and the resistome (c) and microbiota (d). In the PCA analysis, dots refer to urban (yellow), hospital (red) and mixed (blue) untreated WW samples. (For
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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and MGEs through secondary UWW treatment, we observed that
the normalized cumulative abundance of six gene classes did not
significantly decrease while one gene class (sulphonamides) did
significantly increase (Table 2, Fig. 4). This may contribute to the
dissemination of AMR into the environment as discussed previ-
ously (Di Cesare et al., 2016; Karkman et al., 2016; Lee et al., 2017;
Pallares-Vega et al., 2019). In addition, the resistome monitored
here, exhibits a high mobilization potential due to the high pro-
portion of MGEs, integrons and ARGs that are usually located on
plasmids, detected in all WW samples, as well as in the receiving
river waters (Fig.1, MGEs and integrons account for up to 60% of the
resistome of treated effluents and river waters). However, specific
IS transposase genes are differentially abundant in both WW types
(Supplementary Fig. 10). For example, ISS1N, a member of the IS6
family, common in Gram-positive lactic acid bacteria
(Haandrikman et al., 1990) is more abundant in UWW (here,
identified as a specific UWWmarker, Supplementary Figs. 8 and 9),
whereas IS26, and Tn3 are more abundant in HWW. These IS are
commonly found in Gram-negative bacteria in association with
ARGs (Harmer et al., 2014; Nicolas et al., 2015). In order to improve
WWT with respect to ARG and ARB removal, advanced WW
treatment such as disinfection by UV radiation or ozone treatment,
or physical treatment by ultrafiltration of WW, are reported to be
more efficient in reducing ARB and ARGs compared to conven-
tionally applied secondary WW treatment (Gouliouris et al., 2019;
J€ager et al., 2018).

The exposome, a term originally coined in the context of human
health epidemiology and referring to “the totality of human envi-
ronmental exposures”(Wild, 2005), here specifically refers to the
chemical compounds quantified in our longitudinal study that
represent partially the environmental or “eco-exposome” (Escher
et al., 2017) of the WW microbiota. For our study we focused on
surfactants, antibiotics and heavy metals. Anthropogenic pollution
through micro pollutants present in WW has previously shown to
have a negative impact on the environment (Cairns et al., 2017;
Flandroy et al., 2018; Hendry et al., 2017; Palmer and Hatley, 2018;
Pereira and Tagkopoulos, 2019). For example, high concentrations
of antibiotics and cationic surfactants found in HWW (Rodriguez-
Mozaz et al., 2015; Szekeres et al., 2017; Varela et al., 2014), and
pharmaceutical production sites (Bengtsson-Palme et al., 2018;
Bengtsson-Palme and Larsson, 2016) have been correlated with a
higher abundance of ARBs, ARGs, as well as higher abundance of
MGEs and integrons (Rodriguez-Mozaz et al., 2015; Rowe et al.,
2017; Stalder et al., 2014), whereas anionic surfactants that are
generally abundant in urban WW effluents (untreated and treated
UWWs; “grey waters”) are associated with toxicity to aquatic and
terrestrial environments (Jardak et al., 2016; Shafran et al., 2005;
Siggins et al., 2016). Our study reports similar findings. We
observed that cationic surfactants and antibiotics are more abun-
dant in HWW (Supplementary Table 6) and significantly correlated
to the HWW resistome (Fig. 5), which reflects the frequent use of
antibiotics and active-surface agents such as quaternary ammo-
nium compounds in hospitals. Interestingly, we also found that qac
genes were significantly higher in HWW compared to UWW. The
urban WW eco-exposome on the other hand was found to be
enriched with anionic surfactants (Supplementary Table 6) which
in turn were associated with the UWW and MWW resistome and
microbiota (Fig. 5). Other parameters present in the eco-exposome
not measured here might also have an additional influence on the
microbiota and resistome of WWs. For example, streptogramin and
macrolide antibiotics were not quantified in this study to investi-
gate their putative association with the elevated presence of
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macrolide and streptogramin resistance genes in UWW. Overall,
measures to reduce the load of micro-pollutants in WWs and the
environment as a measure to reduce AMR dissemination are
currently discussed and warrant further attention (Kraemer et al.,
2019; Pereira and Tagkopoulos, 2019; Singer et al., 2016). Finally,
the observed peaks and variation during summer season for
detected antibiotics, individual resistance genes and gene classes in
HWW (Supplementary Fig. 3a and 3b and 4) may be due to dry
season and warm temperatures during summer that could result in
decreased flow rate of HWW. Interestingly, recently a potential
association of rising temperatureswith the globally increasing AMR
burden has been reported (Kaba et al., 2020; MacFadden et al.,
2018).

Our findings give further emphasis to the requirement of
implementing and optimizing sanitation systems and operational
WWTPs on a global level, particular in countries/continents with
poor water sanitation infrastructure and correlated high occur-
rence of multi-resistant bacteria (Burgmann et al., 2018). The
elimination of pollution by means of human feces, and bacterial
taxa associated, through advanced or selectiveWW treatment, may
further aid in limiting the release of ARGs associated with human
gut bacteria and pathogens (Gouliouris et al., 2019; Karkman et al.,
2019; Pehrsson et al., 2016). Finally, the data generated by this
study are of important interest to policy makers concerning the
risks associated with H and U WW, their putative implication into
the dissemination of AMR, and provide further evidence towards
the necessity of environmental pollution management in the battle
of AMR and other important global health factors such as the
preservation of biodiversity and the prevention of climate change
(Hendry et al., 2017).

5. Conclusion

� Hospital and urban wastewater resistome and microbiota are
remarkably stable over time and display unique signatures.

� The differences between H and U WW signatures are in line
with the differences in antibiotic exposure in both settings, and
may in addition be shaped by non-antibiotic substances in the
monitored eco-exposome.

� We confirm that Hospital WW contains significantly higher
loads of ARGs, MGEs and integrons, and demonstrate that it is
significantly enriched with a human gut associated microbiota
compared to urban WW.

� We suggest that WW mixing of H and U WW (1:2) bares no
greater risk than separate treatment in order to lower the
emissions of ARGs, MGEs and ARB by HWW.

� Advanced removal of micro-pollutants (such as heavy metals,
biocides, surfactants and antibiotics) is crucial to reduce the
environmental risk posed by the WW eco-exposome and its
putative impact on AMR.
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