M. J. Aryee, Minfi: a flexible and comprehensive bioconductor package for the analysis of Infinium DNA methylation microarrays, Bioinformatics, vol.30, issue.10, pp.1363-1372, 2014.

M. Bibikova, Genome-wide DNA methylation profiling using Infinium® assay, Epigenomics, vol.1, issue.1, pp.177-200, 2009.

S. Bocklandt, Epigenetic predictor of age, PloS one, vol.6, issue.6, p.14821, 2011.

L. P. Breitling, Frailty is associated with the epigenetic clock but not with telomere length in a German cohort, Clin Epigenetics, vol.8, issue.1, p.21, 2016.

S. Davis, P. Du, S. Bilke, .. T. Triche, M. Bootwalla et al., Handle Illumina methylation data, 2017.

S. Dedeurwaerder, A comprehensive overview of Infinium HumanMethylation450 data processing, Brief Bioinform, vol.15, issue.6, pp.929-970, 2014.

P. Farré, Concordant and discordant DNA methylation signatures of aging in human blood and brain, Epigenetics Chromatin, vol.8, issue.1, p.19, 2015.

J. P. Fortin, T. J. Triche, and K. D. Hansen, Preprocessing, normalization and integration of the Illumina HumanMethylationEPIC array with minfi, Bioinformatics, 2016.

P. Garagnani, Methylation of ELOVL2 gene as a new epigenetic marker of age, Aging Cell, vol.11, issue.6, pp.1132-1136, 2012.

G. Hannum, Genome-wide methylation profiles reveal quantitative views of human aging rates, Mol Cell, vol.49, issue.2, pp.359-67, 2013.

S. C. Hicks and R. A. Irizarry, Quantro: a data-driven approach to guide the choice of an appropriate normalization method, Genome Biol, vol.16, issue.1, p.117, 2015.

S. Horvath, DNA methylation age of human tissues and cell types, Genome Biol, vol.14, issue.10, p.115, 2013.

S. Horvath and A. J. Levine, HIV-1 infection accelerates age according to the epigenetic clock, J Infect Dis, vol.212, issue.10, pp.1563-73, 2015.

S. Horvath and K. Raj, DNA methylation-based biomarkers and the epigenetic clock theory of ageing, Nat Rev Genetics, vol.23, p.223, 2018.

S. Horvath and B. R. Ritz, Increased epigenetic age and granulocyte counts in the blood of Parkinson's disease patients, Aging, 2015.

S. Horvath, Aging effects on DNA methylation modules in human brain and blood tissue, Genome Biol, vol.13, issue.10, p.97, 2012.

S. Horvath, An epigenetic clock analysis of race/ethnicity, sex, and coronary heart disease, Genome Biol, vol.17, issue.1, p.171, 2016.

S. Horvath, Decreased epigenetic age of PBMCs from Italian semisupercentenarians and their offspring, Aging, 2015.

L. T. Husquin, Exploring the genetic basis of human population differences in DNA methylation and their causal impact on immune gene regulation. bioRxiv, p.371872, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02352909

P. A. Jones and D. Takai, The role of DNA methylation in mammalian epigenetics, Science, vol.293, issue.5532, pp.1068-70, 2001.

M. W. Logue, The correlation of methylation levels measured using Illumina 450K and EPIC BeadChips in blood samples, Epigenomics, vol.9, issue.11, pp.1363-71, 2017.

R. E. Marioni, S. Shah, A. F. Mcrae, and B. H. Chen, DNA methylation age of blood predicts all-cause mortality in later life, Genome Biol, vol.16, issue.1, p.25, 2015.

R. E. Marioni, S. Shah, A. F. Mcrae, and S. J. Ritchie, The epigenetic clock is correlated with physical and cognitive fitness in the Lothian birth cohort 1936, Int J Epidemiol, vol.44, issue.4, pp.1388-96, 2015.

S. Moran, C. Arribas, and M. Esteller, Validation of a DNA methylation microarray for 850,000 CpG sites of the human genome enriched in enhancer sequences, vol.8, pp.389-99, 2015.

T. J. Morris, ChAMP: 450k Chip analysis methylation pipeline, Bioinformatics, vol.30, issue.3, pp.428-458, 2014.

M. R. Novick and C. Lewis, Coefficient alpha and the reliability of composite measurements, Psychometrika, vol.32, issue.1, pp.1-13, 1967.

M. D. Schultz, Human body epigenome maps reveal noncanonical DNA methylation variation, Nature, vol.523, issue.7559, pp.212-218, 2015.

A. E. Teschendorff, A beta-mixture quantile normalization method for correcting probe design bias in Illumina Infinium 450k DNA methylation data, Bioinformatics, vol.29, issue.2, pp.189-96, 2013.

N. Touleimat and J. Tost, Complete pipeline for Infinium® Human Methylation 450K BeadChip data processing using subset quantile normalization for accurate DNA methylation estimation, Epigenomics, vol.4, issue.3, pp.325-366, 2012.
URL : https://hal.archives-ouvertes.fr/cea-01833158

T. J. Triche, D. J. Weisenberger, D. Van-den, B. Laird, P. W. et al., Low-level processing of Illumina Infinium DNA Methylation BeadArrays, Nucleic Acids Research, vol.201, issue.7, p.90

T. J. Triche, Low-level processing of Illumina Infinium DNA Methylation BeadArrays, Nucleic Acids Res, vol.41, issue.7, p.90, 2013.

O. Troyanskaya, Missing value estimation methods for DNA microarrays, Bioinformatics, vol.17, issue.6, pp.520-525, 2001.

T. Wang, A systematic study of normalization methods for Infinium 450K methylation data using whole-genome bisulfite sequencing data, Epigenetics, vol.10, issue.7, pp.662-671, 2015.

C. I. Weidner, Aging of blood can be tracked by DNA methylation changes at just three CpG sites, Genome Biol, vol.15, issue.2, p.24, 2014.

C. S. Wilhelm-benartzi, Review of processing and analysis methods for DNA methylation array data, Br J Cancer, vol.109, issue.6, pp.1394-402, 2013.

P. Yousefi, Considerations for normalization of DNA methylation data by Illumina 450K BeadChip assay in population studies, Epigenetics, vol.8, issue.11, pp.1141-52, 2014.