K. Barton, A. Winckelmann, and S. Palmer, HIV-1 Reservoirs During Suppressive Therapy, Trends Microbiol, vol.24, pp.345-355, 2016.

S. G. Deeks, S. R. Lewin, A. L. Ross, J. Ananworanich, M. Benkirane et al., International AIDS Society, vol.22, pp.839-850, 2016.

C. P. Passaes and A. Saez-cirion, HIV cure research: advances and prospects, Virology, vol.454, pp.340-352, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01420527

C. V. Fletcher, K. Staskus, S. W. Wietgrefe, M. Rothenberger, C. Reilly et al., Persistent HIV-1 replication is associated with lower antiretroviral drug concentrations in lymphatic tissues, Proc Natl Acad Sci U S A, vol.111, pp.2307-2312, 2014.

R. Lorenzo-redondo, H. R. Fryer, T. Bedford, E. Y. Kim, J. Archer et al., Persistent HIV-1 replication maintains the tissue reservoir during therapy, Nature, vol.530, pp.51-56, 2016.

N. H. Tobin, G. H. Learn, S. E. Holte, Y. Wang, A. J. Melvin et al., Evidence that Low-Level Viremias during Effective Highly Active Antiretroviral Therapy Result from Two Processes: Expression of Archival Virus and Replication of Virus, Journal of Virology, vol.79, pp.9625-9634, 2005.

N. Chomont, M. El-far, P. Ancuta, L. Trautmann, F. A. Procopio et al., HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation, Nat Med, vol.15, pp.893-900, 2009.

T. W. Chun, D. Engel, M. M. Berrey, T. Shea, L. Corey et al., Early establishment of a pool of latently infected, resting CD4(+) T cells during primary HIV-1 infection, Proc Natl Acad Sci U S A, vol.95, pp.8869-8873, 1998.

W. Abbas, M. Tariq, M. Iqbal, A. Kumar, and G. Herbein, Eradication of HIV-1 from the Macrophage Reservoir: An Uncertain Goal, Viruses, vol.7, pp.1578-1598, 2015.

C. M. Coleman and L. Wu, HIV interactions with monocytes and dendritic cells: viral latency and reservoirs, Retrovirology, vol.6, p.51, 2009.

Y. D. Mahnke, T. M. Brodie, F. Sallusto, M. Roederer, and E. Lugli, The who's who of T-cell differentiation: Human memory T-cell subsets, European Journal of Immunology, vol.43, pp.2797-2809, 2013.

J. Ananworanich, K. Dube, and N. Chomont, How does the timing of antiretroviral therapy initiation in acute infection affect HIV reservoirs?, Curr Opin HIV AIDS, vol.10, pp.18-28, 2015.

M. J. Buzon, H. Sun, C. Li, A. Shaw, K. Seiss et al., HIV-1 persistence in CD4+ T cells with stem cell-like properties, Nat Med, vol.20, pp.139-142, 2014.

S. Jaafoura, M. G. De-goer-de-herve, E. A. Hernandez-vargas, H. Hendel-chavez, M. Abdoh et al., Progressive contraction of the latent HIV reservoir around a core of less-differentiated CD4(+) memory T Cells, Nat Commun, vol.5, p.5407, 2014.

A. Cheret, C. Bacchus-souffan, V. Avettand-fenoel, A. Melard, G. Nembot et al., Combined ART started during acute HIV infection protects central memory CD4+ T cells and can induce remission, J Antimicrob Chemother, vol.70, pp.2108-2120, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-01420415

C. B. Wilen, J. C. Tilton, and R. W. Doms, HIV: cell binding and entry, Cold Spring Harb Perspect Med, vol.2, p.6866, 2012.

A. J. Kandathil, S. Sugawara, and A. Balagopal, Are T cells the only HIV-1 reservoir?, Retrovirology, vol.13, p.86, 2016.

A. Kumar, W. Abbas, and G. Herbein, HIV-1 latency in monocytes/macrophages, Viruses, vol.6, pp.1837-1860, 2014.

R. M. Steinman, A. Granelli-piperno, M. Pope, C. Trumpfheller, R. Ignatius et al., The interaction of immunodeficiency viruses with dendritic cells, Curr Top Microbiol Immunol, vol.276, pp.1-30, 2003.

L. Wu and V. N. Kewalramani, Dendritic-cell interactions with HIV: infection and viral dissemination, Nat Rev Immunol, vol.6, pp.859-868, 2006.

N. Izquierdo-useros, M. Naranjo-gomez, I. Erkizia, M. C. Puertas, F. E. Borras et al., HIV and mature dendritic cells: Trojan exosomes riding the Trojan horse?, PLoS Pathog, vol.6, p.1000740, 2010.

B. Descours, A. Cribier, C. Chable-bessia, D. Ayinde, G. Rice et al., SAMHD1 restricts HIV-1 reverse transcription in quiescent CD4(+) T-cells, vol.9, p.87, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-00750469

T. L. Diamond, M. Roshal, V. K. Jamburuthugoda, H. M. Reynolds, A. R. Merriam et al., Macrophage tropism of HIV-1 depends on efficient cellular dNTP utilization by reverse transcriptase, J Biol Chem, vol.279, pp.51545-51553, 2004.

A. L. Brass, D. M. Dykxhoorn, Y. Benita, N. Yan, A. Engelman et al., Identification of host proteins required for HIV infection through a functional genomic screen, Science, vol.319, pp.921-926, 2008.

R. König, Y. Zhou, D. Elleder, T. L. Diamond, G. Bonamy et al., Global Analysis of Host-Pathogen Interactions that Regulate Early-Stage HIV-1 Replication, vol.135, pp.49-60, 2008.

H. Zhou, M. Xu, Q. Huang, A. T. Gates, X. D. Zhang et al., Genome-Scale RNAi Screen for Host Factors Required for HIV Replication, Cell Host & Microbe, vol.4, pp.495-504, 2008.

L. W. Chinn, M. Tang, B. D. Kessing, J. A. Lautenberger, J. L. Troyer et al., Genetic Associations of Variants in Genes Encoding HIV-Dependency Factors Required for HIV-1 Infection, The Journal of Infectious Diseases, vol.202, pp.1836-1845, 2010.

A. Cleret-buhot, Y. Zhang, D. Planas, J. Goulet, P. Monteiro et al., Identification of novel HIV-1 dependency factors in primary CCR4+CCR6+Th17 cells via a genome-wide transcriptional approach, Retrovirology, vol.12, p.102, 2015.

F. Sallusto, D. Lenig, C. R. Mackay, and A. Lanzavecchia, Flexible programs of chemokine receptor expression on human polarized T helper 1 and 2 lymphocytes, J Exp Med, vol.187, pp.875-883, 1998.

E. Pauls, A. Ruiz, E. Riveira-munoz, M. Permanyer, R. Badia et al., p21 regulates the HIV-1 restriction factor SAMHD1, Proc Natl Acad Sci U S A, vol.111, pp.1322-1324, 2014.

J. Zhang, D. T. Scadden, and C. S. Crumpacker, Primitive hematopoietic cells resist HIV-1 infection via p21, J Clin Invest, vol.117, pp.473-481, 2007.

H. Chen, C. Li, J. Huang, T. Cung, K. Seiss et al., CD4+ T cells from elite controllers resist HIV-1 infection by selective upregulation of p21, J Clin Invest, vol.121, pp.1549-1560, 2011.

Y. Han, K. Lassen, D. Monie, A. R. Sedaghat, S. Shimoji et al., Resting CD4+ T cells from human immunodeficiency virus type 1 (HIV-1)-infected individuals carry integrated HIV-1 genomes within actively transcribed host genes, J Virol, vol.78, pp.6122-6133, 2004.

A. R. Schroder, P. Shinn, H. Chen, C. Berry, J. R. Ecker et al., HIV-1 integration in the human genome favors active genes and local hotspots, Cell, vol.110, pp.521-529, 2002.

C. Van-lint, S. Bouchat, and A. Marcello, HIV-1 transcription and latency: an update, Retrovirology, vol.10, p.67, 2013.

F. Macian, NFAT proteins: key regulators of T-cell development and function, Nat Rev Immunol, vol.5, pp.472-484, 2005.

H. Oh and S. Ghosh, NF-kappaB: roles and regulation in different CD4(+) T-cell subsets, Immunol Rev, vol.252, pp.41-51, 2013.

L. Chavez, V. Calvanese, and E. Verdin, HIV Latency Is Established Directly and Early in Both Resting and Activated Primary CD4 T Cells, PLoS Pathog, vol.11, p.1004955, 2015.

H. Chi, Regulation and function of mTOR signalling in T cell fate decisions, Nat Rev Immunol, vol.12, pp.325-338, 2012.

E. Besnard, S. Hakre, M. Kampmann, H. W. Lim, N. N. Hosmane et al., The mTOR Complex Controls HIV Latency, vol.20, pp.785-797, 2016.

J. D. Powell and G. M. Delgoffe, The mammalian target of rapamycin: linking T cell differentiation, function, and metabolism, Immunity, vol.33, pp.301-311, 2010.

S. Loisel-meyer, L. Swainson, M. Craveiro, L. Oburoglu, C. Mongellaz et al., Glut1-mediated glucose transport regulates HIV infection, Proc Natl Acad Sci U S A, vol.109, pp.2549-2554, 2012.

A. Brown, H. Zhang, P. Lopez, C. A. Pardo, and S. Gartner, In vitro modeling of the HIVmacrophage reservoir, J Leukoc Biol, vol.80, pp.1127-1135, 2006.

A. Saez-cirion, M. A. Nicola, G. Pancino, and S. L. Shorte, Quantitative real-time analysis of HIV-1 gene expression dynamics in single living primary cells, Biotechnol J, vol.1, pp.682-689, 2006.

L. Douce, V. Herbein, G. Rohr, O. Schwartz, and C. , Molecular mechanisms of HIV-1 persistence in the monocyte-macrophage lineage, Retrovirology, vol.7, p.32, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00663900

M. L. Vetter, M. E. Johnson, A. K. Antons, D. Unutmaz, and R. T. D'aquila, Differences in APOBEC3G expression in CD4+ T helper lymphocyte subtypes modulate HIV-1 infectivity, PLoS Pathog, vol.5, p.1000292, 2009.

O. Manches, D. Frleta, and N. Bhardwaj, Dendritic cells in progression and pathology of HIV infection, Trends Immunol, vol.35, pp.114-122, 2014.

J. G. Prado, Long-Term Spontaneous Control of HIV-1 Is Related to Low Frequency of Infected Cells and Inefficient Viral Reactivation, J Virol, vol.90, pp.6148-6158, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01414933

G. B. Cohen, R. T. Gandhi, D. M. Davis, O. Mandelboim, B. K. Chen et al., The Selective Downregulation of Class I Major Histocompatibility Complex Proteins by HIV-1 Protects HIV-Infected Cells from NK Cells, Immunity, vol.10, pp.661-671, 1999.

R. Apps, D. Prete, G. Q. Chatterjee, P. Lara, A. Brumme et al., HIV-1 Vpu Mediates HLA-C Downregulation, vol.19, pp.686-695, 2016.

K. L. Collins, B. K. Chen, S. A. Kalams, B. D. Walker, and D. Baltimore, HIV-1 Nef protein protects infected primary cells against killing by cytotoxic T lymphocytes, Nature, vol.391, pp.397-401, 1998.

X. N. Xu, G. R. Screaton, F. M. Gotch, T. Dong, R. Tan et al., Evasion of cytotoxic T lymphocyte (CTL) responses by nef-dependent induction of Fas ligand (CD95L) expression on simian immunodeficiency virusinfected cells, J Exp Med, vol.186, pp.7-16, 1997.

J. N. Rainho, M. A. Martins, F. Cunyat, I. T. Watkins, D. I. Watkins et al., Nef Is Dispensable for Resistance of Simian Immunodeficiency Virus-Infected Macrophages to CD8+ T Cell Killing, Journal of Virology, vol.89, pp.10625-10636, 2015.

L. Vojnov, M. A. Martins, A. T. Bean, M. G. Veloso-de-santana, J. B. Sacha et al., The majority of freshly sorted simian immunodeficiency virus (SIV)-specific CD8(+) T cells cannot suppress viral replication in SIVinfected macrophages, J Virol, vol.86, pp.4682-4687, 2012.

J. B. Sacha, G. -. Vela, J. P. Buechler, M. B. Martins, M. A. Maness et al., Gag-and Nef-specific CD4+ T cells recognize and inhibit SIV replication in infected macrophages early after infection, Proceedings of the National Academy of Sciences of the United States of America, vol.106, pp.9791-9796, 2009.

D. Z. Soghoian, H. Jessen, M. Flanders, K. Sierra-davidson, S. Cutler et al., HIV-Specific Cytolytic CD4 T Cell Responses During Acute HIV Infection Predict Disease Outcome, Science Translational Medicine, vol.4, pp.123-125, 2012.

S. Johnson, M. Eller, J. E. Teigler, S. M. Maloveste, B. T. Schultz et al., Cooperativity of HIV-Specific Cytolytic CD4 T Cells and CD8 T Cells in Control of HIV Viremia, vol.89, pp.7494-7505, 2015.

M. Jouve, N. Sol-foulon, S. Watson, O. Schwartz, and P. Benaroch, HIV-1 buds and accumulates in "nonacidic" endosomes of macrophages, Cell Host Microbe, vol.2, pp.85-95, 2007.
URL : https://hal.archives-ouvertes.fr/pasteur-00293133

S. Welsch, F. Groot, H. G. Krausslich, O. T. Keppler, and Q. J. Sattentau, Architecture and regulation of the HIV-1 assembly and holding compartment in macrophages, J Virol, vol.85, pp.7922-7927, 2011.

J. Tan and Q. J. Sattentau, The HIV-1-containing macrophage compartment: a perfect cellular niche?, Trends Microbiol, vol.21, pp.405-412, 2013.

S. Letendre, J. Marquie-beck, E. Capparelli, B. Best, D. Clifford et al., Validation of the CNS Penetration-Effectiveness Rank for Quantifying Antiretroviral Penetration Into the Central Nervous System, Archives of Neurology, vol.65, pp.65-70, 2008.

S. B. Joseph, K. T. Arrildt, C. B. Sturdevant, and R. Swanstrom, HIV-1 target cells in the CNS, Journal of NeuroVirology, vol.21, pp.276-289, 2015.

P. Kivisäkk, D. J. Mahad, M. K. Callahan, C. Trebst, T. B. Wei et al., Human cerebrospinal fluid central memory CD4+ T cells: Evidence for trafficking through choroid plexus and meninges via P-selectin, Proceedings of the National Academy of Sciences, vol.100, pp.8389-8394, 2003.

K. G. Young, S. Maclean, R. Dudani, L. Krishnan, and S. Sad, CD8+ T Cells Primed in the Periphery Provide Time-Bound Immune-Surveillance to the Central Nervous System, The Journal of Immunology, vol.187, pp.1192-1200, 2011.

L. M. Wakim, A. Woodward-davis, and M. J. Bevan, Memory T cells persisting within the brain after local infection show functional adaptations to their tissue of residence, Proceedings of the National Academy of Sciences, vol.107, pp.17872-17879, 2010.

C. F. Kessing, S. Spudich, V. Valcour, P. Cartwright, T. Chalermchai et al., High Number of Activated CD8+ T Cells Targeting HIV Antigens are Present in Cerebrospinal Fluid in Acute HIV Infection, 1999.

A. Ganesh, D. Lemongello, E. Lee, J. Peterson, B. E. Mclaughlin et al., Immune Activation and HIV-Specific CD8(+) T Cells in Cerebrospinal Fluid of HIV Controllers and Noncontrollers, AIDS research and human retroviruses, vol.32, pp.791-800, 2016.

S. Sadagopal, S. L. Lorey, L. Barnett, R. Basham, L. Lebo et al., Enhancement of Human Immunodeficiency Virus (HIV)-Specific CD8+ T Cells in Cerebrospinal Fluid Compared to Those in Blood among Antiretroviral Therapy-Naïve HIV-Positive Subjects, Journal of Virology, vol.82, pp.10418-10428, 2008.

F. Lescure, A. Moulignier, J. Savatovsky, C. Amiel, G. Carcelain et al., CD8 Encephalitis in HIV-Infected Patients Receiving cART: A Treatable Entity, vol.57, pp.101-108, 2013.

R. F. Miller, P. G. Isaacson, M. Hall-craggs, S. Lucas, F. Gray et al., Cerebral CD8+ lymphocytosis in HIV-1 infected patients with immune restoration induced by HAART, Acta Neuropathologica, vol.108, pp.17-23, 2004.

M. Marcondes, B. Morsey, K. Emanuel, B. G. Lamberty, C. T. Flynn et al., CD8+ T Cells Maintain Suppression of Simian Immunodeficiency Virus in the Central Nervous System, The Journal of Infectious Diseases, vol.211, pp.40-44, 2015.

R. Banga, F. A. Procopio, A. Noto, G. Pollakis, M. Cavassini et al., PD-1+ and follicular helper T cells are responsible for persistent HIV-1 transcription in treated aviremic individuals, Nature Medicine, vol.22, pp.754-761, 2016.

M. Perreau, A. Savoye, E. D. Crignis, J. Corpataux, R. Cubas et al., Follicular helper T cells serve as the major CD4 T cell compartment for HIV-1 infection, replication, and production, Journal of Experimental Medicine, vol.210, pp.143-156, 2013.

E. Connick, T. Mattila, J. M. Folkvord, R. Schlichtemeier, A. L. Meditz et al., CTL Fail to Accumulate at Sites of HIV-1 Replication in Lymphoid Tissue, The Journal of Immunology, vol.178, pp.6975-6983, 2007.

J. M. Folkvord, C. Armon, and E. Connick, Lymphoid Follicles Are Sites of Heightened Human Immunodeficiency Virus Type 1 (HIV-1) Replication and Reduced Antiretroviral Effector Mechanisms, AIDS Research and Human Retroviruses, vol.21, pp.363-370, 2005.

Y. Fukazawa, R. Lum, A. A. Okoye, H. Park, K. Matsuda et al., B cell follicle sanctuary permits persistent productive simian immunodeficiency virus infection in elite controllers, Nature Medicine, vol.21, pp.132-139, 2015.

J. J. Hong, P. K. Amancha, K. Rogers, A. A. Ansari, and F. Villinger, Spatial Alterations between CD4+, 2012.

B. T-follicular-helper, Cells during Simian Immunodeficiency Virus Infection: T/B Cell Homeostasis, Activation, and Potential Mechanism for Viral Escape, The Journal of Immunology, vol.188, pp.3247-3256

Y. A. Leong, Y. Chen, H. S. Ong, D. Wu, K. Man et al., CXCR5+ follicular cytotoxic T cells control viral infection in B cell follicles, Nature Immunology, vol.17, pp.1187-1196, 2016.

C. Petrovas, S. Ferrando-martinez, M. Y. Gerner, J. P. Casazza, A. Pegu et al., Follicular CD8 T cells accumulate in HIV infection and can kill infected cells in vitro via bispecific antibodies, Science Translational Medicine, vol.9, p.2285, 2017.

M. Murphey-corb, L. A. Wilson, A. M. Trichel, D. E. Roberts, K. Xu et al., Selective Induction of Protective MHC Class I-Restricted CTL in the Intestinal Lamina Propria of Rhesus Monkeys by Transient SIV Infection of the Colonic Mucosa, The Journal of Immunology, vol.162, pp.540-549, 1999.

B. L. Lohman, C. J. Miller, and M. B. Mcchesney, Antiviral cytotoxic T lymphocytes in vaginal mucosa of simian immunodeficiency virus-infected rhesus macaques, The Journal of Immunology, vol.155, pp.5855-5860, 1995.

A. Damouche, T. Lazure, V. Avettand-fènoël, N. Huot, N. Dejucq-rainsford et al., Adipose Tissue Is a Neglected Viral Reservoir and an Inflammatory Site during Chronic HIV and SIV Infection, PLOS Pathogens, vol.11, p.1005153, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01207287

D. Finzi and R. F. Siliciano, Viral Dynamics in HIV-1 Infection, Cell, vol.93, pp.665-671, 1998.

V. Avettand-fenoel, L. Hocqueloux, J. Ghosn, A. Cheret, P. Frange et al., Total HIV-1 DNA, a Marker of Viral Reservoir Dynamics with Clinical Implications, Clin Microbiol Rev, vol.29, pp.859-880, 2016.

A. S. Perelson, Modelling viral and immune system dynamics, Nat Rev Immunol, vol.2, pp.28-36, 2002.

E. Lugli, M. H. Dominguez, L. Gattinoni, P. K. Chattopadhyay, D. L. Bolton et al., Superior T memory stem cell persistence supports long-lived T cell memory, The Journal of Clinical Investigation, vol.123, pp.594-599, 2013.

D. C. Macallan, D. Wallace, Y. Zhang, D. Lara, C. Worth et al., Rapid turnover of effector-memory CD4(+) T cells in healthy humans, J Exp Med, vol.200, pp.255-260, 2004.

N. Vrisekoop, I. Den-braber, A. B. De-boer, A. F. Ruiter, M. T. Ackermans et al., Sparse production but preferential incorporation of recently produced naive T cells in the human peripheral pool, Proc Natl Acad Sci U S A, vol.105, pp.6115-6120, 2008.

L. Gattinoni, E. Lugli, Y. Ji, Z. Pos, C. M. Paulos et al., A human memory T cell subset with stem cell-like properties, Nat Med, vol.17, pp.1290-1297, 2011.

R. A. Clark, Resident memory T cells in human health and disease, Science translational medicine, vol.7, pp.269-261, 2015.

S. R. Dinapoli, A. M. Ortiz, F. Wu, K. Matsuda, H. L. Twigg et al., Tissue-resident macrophages can contain replication-competent virus in antiretroviral-naive, SIV-infected Asian macaques, JCI Insight, vol.2, 2017.

S. Crowe, T. Zhu, and W. A. Muller, The contribution of monocyte infection and trafficking to viral persistence, and maintenance of the viral reservoir in HIV infection, Journal of Leukocyte Biology, vol.74, pp.635-641, 2003.

M. Stevenson, HIV-1 pathogenesis, Nat Med, vol.9, pp.853-860, 2003.

K. C. Jambo, D. H. Banda, A. M. Kankwatira, N. Sukumar, T. J. Allain et al., Small alveolar macrophages are infected preferentially by HIV and exhibit impaired phagocytic function, Mucosal Immunol, vol.7, pp.1116-1126, 2014.

I. Eguiluz-gracia, H. H. Schultz, L. I. Sikkeland, E. Danilova, A. M. Holm et al., Long-term persistence of human donor alveolar macrophages in lung transplant recipients, Thorax, vol.71, pp.1006-1011, 2016.

D. K. Nayak, F. Zhou, M. Xu, J. Huang, M. Tsuji et al., Long-Term Persistence of Donor Alveolar Macrophages in Human Lung Transplant Recipients That Influences Donor-Specific Immune Responses, Am J Transplant, vol.16, pp.2300-2311, 2016.

T. L. Tay, J. C. Savage, C. W. Hui, K. Bisht, and M. E. Tremblay, Microglia across the lifespan: from origin to function in brain development, plasticity and cognition, Journal of Physiology-London, vol.595, pp.1929-1945, 2017.

C. A. Carter and L. S. Ehrlich, Cell biology of HIV-1 infection of macrophages, Annu Rev Microbiol, vol.62, pp.425-443, 2008.

G. Jones and C. Power, Regulation of neural cell survival by HIV-1 infection, Neurobiol Dis, vol.21, pp.1-17, 2006.

J. C. Mcnelis and J. M. Olefsky, Macrophages, immunity, and metabolic disease, Immunity, vol.41, pp.36-48, 2014.

L. B. Cohn, I. T. Silva, T. Y. Oliveira, R. A. Rosales, E. H. Parrish et al., HIV-1 integration landscape during latent and active infection, Cell, vol.160, pp.420-432, 2015.

F. Maldarelli, X. Wu, L. Su, F. R. Simonetti, W. Shao et al., Specific HIV integration sites are linked to clonal expansion and persistence of infected cells, Science, vol.345, pp.179-183, 2014.

F. R. Simonetti, M. D. Sobolewski, E. Fyne, W. Shao, J. Spindler et al., Clonally expanded CD4+ T cells can produce infectious HIV-1 in vivo, Proceedings of the National Academy of Sciences, vol.113, pp.1883-1888, 2016.

T. A. Wagner, S. Mclaughlin, K. Garg, C. Cheung, B. B. Larsen et al., Proliferation of cells with HIV integrated into cancer genes contributes to persistent infection, Science, vol.345, pp.570-573, 2014.

E. A. Boritz, S. Darko, L. Swaszek, G. Wolf, D. Wells et al., Multiple Origins of Virus Persistence during Natural Control of HIV Infection, Cell, vol.166, pp.1004-1015, 2016.

N. N. Hosmane, K. J. Kwon, K. M. Bruner, A. A. Capoferri, S. Beg et al., Proliferation of latently infected CD4+ T cells carrying replication-competent HIV-1: Potential role in latent reservoir dynamics, Journal of Experimental Medicine, 2017.

M. Berard and D. F. Tough, Qualitative differences between naive and memory T cells, Immunology, vol.106, pp.127-138, 2002.

A. Bosque, M. Famiglietti, A. S. Weyrich, C. Goulston, and V. Planelles, Homeostatic Proliferation Fails to Efficiently Reactivate HIV-1 Latently Infected Central Memory CD4+ T Cells, PLOS Pathogens, vol.7, p.1002288, 2011.

O. Boyman, J. F. Purton, C. D. Surh, and J. Sprent, Cytokines and T-cell homeostasis, Current Opinion in Immunology, vol.19, pp.320-326, 2007.

B. Seddon, P. Tomlinson, and R. Zamoyska, Interleukin 7 and T cell receptor signals regulate homeostasis of CD4 memory cells, Nature Immunology, vol.4, pp.680-686, 2003.

C. D. Surh and J. Sprent, Homeostasis of Naive and Memory T Cells, Immunity, vol.29, pp.848-862, 2008.

N. D. Pennock, J. T. White, E. W. Cross, E. E. Cheney, B. A. Tamburini et al., T cell responses: naïve to memory and everything in between, Advances in Physiology Education, vol.37, pp.273-283, 2013.

E. Hammarlund, M. W. Lewis, S. G. Hansen, L. I. Strelow, J. A. Nelson et al., Duration of antiviral immunity after smallpox vaccination, Nature Medicine, vol.9, pp.1131-1137, 2003.

R. Badia, M. Pujantell, E. Riveira-munoz, T. Puig, J. Torres-torronteras et al., The G1/S Specific Cyclin D2 Is a Regulator of HIV-1 Restriction in Non-proliferating Cells, Plos Pathogens, vol.12, 2016.

E. Pauls, A. Ruiz, R. Badia, M. Permanyer, A. Gubern et al., Cell Cycle Control and HIV-1 Susceptibility Are Linked by CDK6-Dependent CDK2 Phosphorylation of SAMHD1 in Myeloid and Lymphoid Cells, The Journal of Immunology, vol.193, pp.1988-1997, 2014.

S. J. Jenkins, D. Ruckerl, P. C. Cook, L. H. Jones, F. D. Finkelman et al., Local Macrophage Proliferation, Rather than Recruitment from the Blood, Is a Signature of TH2 Inflammation, Science, vol.332, pp.1284-1288, 2011.

C. S. Robbins, I. Hilgendorf, G. F. Weber, I. Theurl, Y. Iwamoto et al., Local proliferation dominates lesional macrophage accumulation in atherosclerosis, Nature Medicine, vol.19, pp.1166-1172, 2013.

B. F. Zamarron, T. A. Mergian, K. W. Cho, G. Martinez-santibanez, D. Luan et al., Macrophage Proliferation Sustains Adipose Tissue Inflammation in Formerly Obese Mice, 2016.

D. C. Douek, J. M. Brenchley, M. R. Betts, D. R. Ambrozak, B. J. Hill et al., HIV preferentially infects HIV-specific CD4+ T cells, Nature, vol.417, pp.95-98, 2002.

A. Gosselin, W. Salinas, T. R. Planas, D. Wacleche, V. S. Zhang et al., HIV persists in CCR6+CD4+ T cells from colon and blood during antiretroviral therapy, vol.31, pp.35-48, 2017.

I. Kryczek, E. Zhao, Y. Liu, Y. Wang, L. Vatan et al., Human TH17 Cells Are Long-Lived Effector Memory Cells, Science Translational Medicine, vol.3, pp.104-100, 2011.

P. Muranski, A. Borman-zachary, K. Sid, P. , K. Christopher et al., Th17 Cells Are Long Lived and Retain a Stem Cell-like Molecular Signature, Immunity, vol.35, pp.972-985, 2011.