K. A. Mcdonough and A. Rodriguez, The myriad roles of cyclic AMP in microbial pathogens: from signal to sword, Nat Rev Microbiol, vol.10, issue.1, pp.27-38, 2012.

U. Jenal, A. Reinders, and C. Lori, Cyclic di-GMP: second messenger extraordinaire, Nat Rev Microbiol, vol.15, issue.5, pp.271-84, 2017.

P. V. Krasteva and H. Sondermann, Versatile modes of cellular regulation via cyclic dinucleotides, Nat Chem Biol, vol.13, issue.4, pp.350-359, 2017.
URL : https://hal.archives-ouvertes.fr/cea-01887446

O. Danilchanka and J. J. Mekalanos, Cyclic dinucleotides and the innate immune response, Cell, vol.154, issue.5, pp.962-70, 2013.

J. Gao, J. Tao, W. Liang, and Z. Jiang, Cyclic (di)nucleotides: the common language shared by microbe and host, Curr Opin Microbiol, vol.30, pp.79-87, 2016.

J. J. Woodward, A. T. Iavarone, and D. A. Portnoy, c-di-AMP secreted by intracellular Listeria monocytogenes activates a host Type I Interferon response, Science, vol.328, issue.5986, pp.1703-1708, 2010.

J. Moretti, S. Roy, D. Bozec, J. Martinez, J. R. Chapman et al., STING senses microbial viability to orchestrate stress-mediated autophagy of the endoplasmic reticulum, Cell, vol.171, issue.4, pp.809-832, 2017.

F. V. Marinho, S. Benmerzoug, S. C. Oliveira, B. Ryffel, and V. Quesniaux, The emerging roles of STING in bacterial infections, Trends Microbiol, vol.25, issue.11, pp.906-924, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02126427

L. Devaux, P. A. Kaminski, P. Trieu-cuot, and A. Firon, Cyclic di-AMP in host-pathogen interactions, Curr Opin Microbiol, vol.41, pp.21-29, 2018.

W. A. Andrade, A. Firon, T. Schmidt, V. Hornung, K. A. Fitzgerald et al., Group B Streptococcus degrades cyclic-di-AMP to modulate STING-dependent Type I Interferon production, Cell Host Microbe, vol.20, issue.1, pp.49-59, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01483976

R. M. Corrigan and A. Grundling, Cyclic di-AMP: another second messenger enters the fray, Nat Rev Microbiol, vol.11, issue.8, pp.513-537, 2013.

F. M. Commichau, A. Dickmanns, J. Gundlach, R. Ficner, and J. Stulke, A jack of all trades: the multiple roles of the unique essential second messenger cyclic di-AMP, Mol Microbiol, vol.97, issue.2, pp.189-204, 2015.

G. Liu, M. Y. Yong, M. Yurieva, K. G. Srinivasan, J. Liu et al., Gene essentiality is a quantitative property linked to cellular evolvability, Cell, vol.163, issue.6, pp.1388-99, 2015.

, AMP essential function in Group B Streptococcus PLOS Genetics, 201820-04-16.

A. T. Whiteley, A. J. Pollock, and D. A. Portnoy, The PAMP c-di-AMP is essential for Listeria monocytogenes growth in rich but not minimal media due to a toxic increase in (p), Cell Host Microbe, vol.17, issue.6, pp.788-98, 2015.

A. T. Whiteley, N. E. Garelis, B. N. Peterson, P. H. Choi, L. Tong et al., c-di-AMP modulates Listeria monocytogenes central metabolism to regulate growth, antibiotic resistance and osmoregulation

, Mol Microbiol, vol.104, issue.2, pp.212-245, 2017.

K. Sureka, P. H. Choi, M. Precit, M. Delince, D. A. Pensinger et al., The cyclic dinucleotide c-di-AMP is an allosteric regulator of metabolic enzyme function, Cell, vol.158, issue.6, pp.1389-401, 2014.

P. H. Choi, T. Vu, H. T. Pham, J. J. Woodward, M. S. Turner et al., Structural and functional studies of pyruvate carboxylase regulation by cyclic di-AMP in lactic acid bacteria, Proc Natl Acad Sci, vol.114, issue.35, pp.7226-7261, 2017.

F. M. Mehne, K. Gunka, H. Eilers, C. Herzberg, V. Kaever et al., Cyclic di-AMP homeostasis in Bacillus subtilis: both lack and high level accumulation of the nucleotide are detrimental for cell growth, J Biol Chem, vol.288, issue.3, pp.2004-2021, 2013.

J. Gundlach, F. M. Mehne, C. Herzberg, J. Kampf, O. Valerius et al., An essential poison: synthesis and degradation of cyclic di-AMP in Bacillus subtilis, J Bacteriol, vol.197, issue.20, pp.3265-74, 2015.

J. Gundlach, C. Herzberg, V. Kaever, K. Gunka, T. Hoffmann et al., Control of potassium homeostasis is an essential function of the second messenger cyclic di-AMP in Bacillus subtilis, Sci Signal, vol.10, issue.475, p.3011, 2017.

M. S. Zeden, C. F. Schuster, L. Bowman, Q. Zhong, H. D. Williams et al., Cyclic-di-adenosine monophosphate (c-di-AMP) is required for osmotic regulation in Staphylococcus aureus but dispensable for viability in anaerobic conditions, J Biol Chem, vol.293, issue.9, pp.3180-3200, 2018.

R. M. Corrigan, I. Campeotto, T. Jeganathan, K. G. Roelofs, V. T. Lee et al., Systematic identification of conserved bacterial c-di-AMP receptor proteins, Proc Natl Acad Sci U S A, vol.110, issue.22, pp.9084-9093, 2013.

H. Kim, S. J. Youn, S. O. Kim, J. Ko, J. O. Lee et al., Structural studies of potassium transport protein KtrA regulator of conductance of K+ (RCK) C domain in complex with cyclic diadenosine monophosphate (cdi-AMP), J Biol Chem, vol.290, issue.26, pp.16393-402, 2015.

Y. Bai, J. Yang, T. M. Zarrella, Y. Zhang, D. W. Metzger et al., Cyclic di-AMP impairs potassium uptake mediated by a cyclic di-AMP binding protein in Streptococcus pneumoniae, J Bacteriol, vol.196, issue.3, pp.614-637, 2014.

C. Blotz, K. Treffon, V. Kaever, F. Schwede, E. Hammer et al., Identification of the components involved in cyclic di-AMP signaling in Mycoplasma pneumoniae, Frontiers in microbiology, vol.8, p.1328, 2017.

A. A. Baykov, H. K. Tuominen, and R. Lahti, The CBS domain: a protein module with an emerging prominent role in regulation, ACS Chem Biol, vol.6, issue.11, pp.1156-63, 2011.

C. F. Schuster, L. E. Bellows, T. Tosi, I. Campeotto, R. M. Corrigan et al., The second messenger c-di-AMP inhibits the osmolyte uptake system OpuC in Staphylococcus aureus, Science signaling, vol.9, issue.441, p.81, 2016.

T. N. Huynh, P. H. Choi, K. Sureka, H. E. Ledvina, J. Campillo et al., Cyclic di-AMP targets the cystathionine beta-synthase domain of the osmolyte transporter OpuC, Mol Microbiol, vol.102, issue.2, pp.233-276, 2016.

J. M. Wood, Osmosensing by bacteria, Sci STKE, issue.357, p.43, 2006.

J. M. Wood, Bacterial osmoregulation: a paradigm for the study of cellular homeostasis, Annu Rev Microbiol, vol.65, pp.215-253, 2011.

J. A. Moscoso, H. Schramke, Y. Zhang, T. Tosi, A. Dehbi et al., Binding of cyclic di-AMP to the Staphylococcus aureus sensor kinase KdpD occurs via the universal stress protein domain and downregulates the expression of the Kdp potassium transporter, J Bacteriol, vol.198, issue.1, pp.98-110, 2015.

J. W. Nelson, N. Sudarsan, K. Furukawa, Z. Weinberg, J. X. Wang et al., Riboswitches in eubacteria sense the second messenger c-di-AMP, Group B Streptococcus, vol.9, pp.834-843, 2013.

J. Gundlach, F. M. Commichau, and J. Stulke, Perspective of ions and messengers: an intricate link between potassium, glutamate, and cyclic di-AMP, Curr Genet, vol.64, issue.1, pp.191-196, 2018.

K. M. Edmond, C. Kortsalioudaki, S. Scott, S. J. Schrag, A. K. Zaidi et al., Group B streptococcal disease in infants aged younger than 3 months: systematic review and meta-analysis, Lancet, vol.379, issue.9815, pp.61651-61657, 2012.

M. De-la-rosa, R. Villareal, D. Vega, C. Miranda, and A. Martinezbrocal, Granada medium for detection and identification of group B streptococci, J Clin Microbiol, vol.18, issue.4, pp.779-85, 1983.

C. Whidbey, M. I. Harrell, K. Burnside, L. Ngo, A. K. Becraft et al., A hemolytic pigment of Group B Streptococcus allows bacterial penetration of human placenta, J Exp Med, vol.210, issue.6, pp.1265-81, 2013.

G. Witte, S. Hartung, K. Buttner, and K. P. Hopfner, Structural biochemistry of a bacterial checkpoint protein reveals diadenylate cyclase activity regulated by DNA recombination intermediates, Mol Cell, vol.30, issue.2, pp.167-78, 2008.

J. Rosenberg, A. Dickmanns, P. Neumann, K. Gunka, J. Arens et al., Structural and biochemical analysis of the essential diadenylate cyclase CdaA from Listeria monocytogenes, J Biol Chem, vol.290, issue.10, pp.6596-606, 2015.

P. Glaser, C. Rusniok, C. Buchrieser, F. Chevalier, L. Frangeul et al., Genome sequence of Streptococcus agalactiae, a pathogen causing invasive neonatal disease, Mol Microbiol, vol.45, issue.6, pp.1499-513, 2002.

A. Six, A. Firon, C. Plainvert, C. Caplain, G. Touak et al., Molecular characterization of nonhemolytic and nonpigmented group B streptococci responsible for human invasive infections, J Clin Microbiol, vol.54, issue.1, pp.75-82, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01288318

U. Samen, B. Gottschalk, B. J. Eikmanns, and D. J. Reinscheid, Relevance of peptide uptake systems to the physiology and virulence of Streptococcus agalactiae, J Bacteriol, vol.186, issue.5, pp.1398-408, 2004.

D. Obis, A. Guillot, J. C. Gripon, P. Renault, A. Bolotin et al., Genetic and biochemical characterization of a high-affinity betaine uptake system (BusA) in Lactococcus lactis reveals a new functional organization within bacterial ABC transporters, J Bacteriol, vol.181, issue.20, pp.6238-6284, 1999.

R. Guerillot, D. Cunha, V. Sauvage, E. Bouchier, C. Glaser et al., Modular evolution of TnGBSs, a new family of integrative and conjugative elements associating insertion sequence transposition, plasmid replication, and conjugation for their spreading, J Bacteriol, vol.195, issue.9, pp.1745-1757, 2013.

T. Van-der-heide and B. Poolman, Osmoregulated ABC-transport system of Lactococcus lactis senses water stress via changes in the physical state of the membrane, Proc Natl Acad Sci U S A, vol.97, issue.13, pp.7102-7108, 2000.

G. S. Tamura, A. Nittayajarn, and D. L. Schoentag, A glutamine transport gene, glnQ, is required for fibronectin adherence and virulence of Group B streptococci, Infect Immun, vol.70, issue.6, pp.2877-85, 2002.

F. Fulyani, G. K. Schuurman-wolters, D. J. Slotboom, and B. Poolman, Relative rates of amino acid Import via the ABC transporter GlnPQ determine the growth performance of Lactococcus lactis, J Bacteriol, vol.198, issue.3, pp.477-85, 2015.

K. G. Roelofs, J. Wang, H. O. Sintim, and V. T. Lee, Differential radial capillary action of ligand assay for highthroughput detection of protein-metabolite interactions, Proc Natl Acad Sci U S A, vol.108, issue.37, pp.15528-15561, 2011.

Y. Romeo, D. Obis, J. Bouvier, A. Guillot, A. Fourcans et al., Osmoregulation in Lactococcus lactis: BusR, a transcriptional repressor of the glycine betaine uptake system BusA, Mol Microbiol, vol.47, issue.4, pp.1135-1182, 2003.

J. A. Meadows and M. J. Wargo, Carnitine in bacterial physiology and metabolism, Microbiology, vol.161, issue.6, pp.1161-74, 2015.

S. Brinster, G. Lamberet, B. Staels, P. Trieu-cuot, A. Gruss et al., Type II fatty acid synthesis is not a suitable antibiotic target for Gram-positive pathogens, Nature, vol.458, issue.7234, pp.83-89, 2009.
URL : https://hal.archives-ouvertes.fr/pasteur-00366166

F. M. Commichau, J. Gibhardt, S. Halbedel, J. Gundlach, and J. Stulke, A delicate connection: c-di-AMP affects cell integrity by controlling osmolyte transport, Trends Microbiol, vol.26, issue.3, pp.175-85, 2018.

T. Hoffmann and E. Bremer, Guardians in a stressful world: the Opu family of compatible solute transporters from Bacillus subtilis, Biol Chem, vol.398, issue.2, pp.193-214, 2017.

A. Price-whelan, C. K. Poon, M. A. Benson, T. T. Eidem, C. M. Roux et al., Transcriptional profiling of Staphylococcus aureus during growth in 2 M NaCl leads to clarification of physiological roles for Kdp and Ktr K+ uptake systems, MBio, vol.4, issue.4, 2013.

D. C. Sevin, J. N. Stahlin, G. R. Pollak, A. Kuehne, and U. Sauer, Global metabolic responses to salt stress in fifteen species, PLoS One, vol.11, issue.2, p.148888, 2016.

L. Zhang, W. Li, and Z. G. He, DarR, a TetR-like transcriptional factor, is a cyclic di-AMP-responsive repressor in Mycobacterium smegmatis, J Biol Chem, vol.288, issue.5, pp.3085-96, 2013.

D. Jain, Allosteric control of transcription in GntR family of transcription regulators: A structural overview, IUBMB life, vol.67, issue.7, pp.556-63, 2015.

Y. Romeo, J. Bouvier, and C. Gutierrez, Osmotic regulation of transcription in Lactococcus lactis: ionic strength-dependent binding of the BusR repressor to the busA promoter, FEBS Lett, vol.581, issue.18, pp.3387-90, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00211496

E. R. Rojas and K. C. Huang, Regulation of microbial growth by turgor pressure, Curr Opin Microbiol, vol.42, pp.62-70, 2017.

K. H. Chin, J. M. Liang, J. G. Yang, M. S. Shih, Z. L. Tu et al., Structural insights into the distinct binding mode of cyclic di-AMP with SaCpaA_RCK, Biochemistry, vol.54, issue.31, pp.4936-51, 2015.

I. R. Booth, Bacterial mechanosensitive channels: progress towards an understanding of their roles in cell physiology, Curr Opin Microbiol, vol.18, pp.16-22, 2014.

D. Perez-pascual, P. Gaudu, B. Fleuchot, C. Besset, I. Rosinski-chupin et al., RovS and its associated signaling peptide form a cell-to-cell communication system required for Streptococcus agalactiae pathogenesis, MBio, vol.6, issue.1, pp.2306-2320, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01204482

X. Cheng, X. Zheng, X. Zhou, J. Zeng, Z. Ren et al., Regulation of oxidative response and extracellular polysaccharide synthesis by a diadenylate cyclase in Streptococcus mutans, Environ Microbiol, vol.18, issue.3, pp.904-926, 2016.

Y. Yamamoto, V. Pargade, G. Lamberet, P. Gaudu, F. Thomas et al., The Group B Streptococcus NADH oxidase Nox-2 is involved in fatty acid biosynthesis during aerobic growth and contributes to virulence, Mol Microbiol, vol.62, issue.3, p.16999835, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00101541

Y. Yamamoto, C. Poyart, P. Trieu-cuot, G. Lamberet, A. Gruss et al., Respiration metabolism of Group B Streptococcus is activated by environmental haem and quinone and contributes to virulence

, Mol Microbiol, vol.56, issue.2, pp.525-559, 2005.

P. Moulin, K. Patron, C. Cano, M. A. Zorgani, E. Camiade et al., The Adc/Lmb system mediates zinc acquisition in Streptococcus agalactiae and contributes to bacterial growth and survival, J Bacteriol, vol.198, issue.24, pp.3265-77, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01594866

M. Buscetta, S. Papasergi, A. Firon, G. Pietrocola, C. Biondo et al., FbsC, a novel fibrinogenbinding protein, promotes Streptococcus agalactiae-host cell interactions, J Biol Chem, vol.289, issue.30, pp.21003-21018, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01299770

K. L. Heckman and L. R. Pease, Gene splicing and mutagenesis by PCR-driven overlap extension, Nat Protoc, vol.2, issue.4, pp.924-956, 2007.

A. Firon, A. Tazi, D. Cunha, V. Brinster, S. Sauvage et al., The Abi-domain protein Abx1 interacts with the CovS histidine kinase to control virulence gene expression in group B Streptococcus
URL : https://hal.archives-ouvertes.fr/pasteur-01300159

, PLoS Pathog, vol.9, issue.2, p.1003179, 2013.

C. Poyart and P. Trieu-cuot, A broad-host-range mobilizable shuttle vector for the construction of transcriptional fusions to beta-galactosidase in gram-positive bacteria, FEMS Microbiol Lett, vol.156, issue.2, pp.193-201, 1997.

I. Rosinski-chupin, E. Sauvage, O. Sismeiro, A. Villain, D. Cunha et al., Single nucleotide resolution RNA-seq uncovers new regulatory mechanisms in the opportunistic pathogen Streptococcus agalactiae, BMC Genomics, vol.16, p.26024923, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01169621