D. Mcdonald, M. A. Vodicka, G. Lucero, T. M. Svitkina, G. G. Borisy et al., , 2002.

, Visualization of the intracellular behavior of HIV in living cells, J Cell Biol, vol.159, pp.441-52

E. M. Campbell and T. J. Hope, HIV-1 capsid: the multifaceted key player in HIV-1 infection, 2015.

, Nat Rev Microbiol, vol.13, pp.471-83

M. Lelek, N. Casartelli, D. Pellin, E. Rizzi, P. Souque et al.,

F. Griffero, C. Zimmer, P. Charneau, D. Nunzio, and F. , Chromatin organization at the nuclear 587 pore favours HIV replication, Nat Commun, vol.6, p.6483, 2015.

D. Nunzio, F. Fricke, T. Miccio, A. Valle-casuso, J. C. Perez et al., , p.589

F. Mavilio, P. Charneau, and F. Diaz-griffero, Nup153 and Nup98 bind the HIV-1 core and 590 contribute to the early steps of HIV-1 replication, Virology, vol.440, pp.8-18, 2013.

D. Nunzio, F. Danckaert, A. Fricke, T. Perez, P. Fernandez et al., , p.592

P. Diaz-griffero, F. Arhel, and N. J. , Human nucleoporins promote HIV-1 docking at the nuclear 593 pore, nuclear import and integration, PLoS One, vol.7, p.46037, 2012.

K. A. Matreyek, S. S. Yucel, X. Li, and A. Engelman, Nucleoporin NUP153 phenylalanine-glycine 595 motifs engage a common binding pocket within the HIV-1 capsid protein to mediate lentiviral 596 infectivity, PLoS Pathog, vol.9, p.1003693, 2013.

T. Schaller, K. E. Ocwieja, J. Rasaiyaah, A. J. Price, T. L. Brady et al., , p.598

V. N. Kewalramani, M. Noursadeghi, R. G. Jenner, L. C. James, F. D. Bushman et al., , 2011.

, capsid-cyclophilin interactions determine nuclear import pathway, integration targeting and 600 replication efficiency, PLoS Pathog, vol.7, p.1002439

K. Lee, Z. Ambrose, T. D. Martin, I. Oztop, A. Mulky et al., , vol.602

R. , Y. W. Takemura, T. Shelton, K. Taniuchi, I. Li et al., Flexible use of nuclear import 604 pathways by HIV-1, Cell Host Microbe, vol.7, pp.221-254, 2010.

M. Stremlau, C. M. Owens, M. J. Perron, M. Kiessling, P. Autissier et al., The 606 cytoplasmic body component TRIM5alpha restricts HIV-1 infection in Old World monkeys, Nature, vol.607, pp.848-53, 2004.

C. Goujon, O. Moncorge, H. Bauby, T. Doyle, C. C. Ward et al., , p.609

M. H. Malim, Human MX2 is an interferon-induced post-entry inhibitor of HIV-1 610 infection, Nature, vol.502, pp.559-62, 2013.

O. Pornillos, B. K. Ganser-pornillos, and M. Yeager, Atomic-level modelling of the HIV capsid, Nature, vol.612, pp.424-431, 2011.

B. K. Ganser, S. Li, V. Y. Klishko, J. T. Finch, and W. I. Sundquist, Assembly and analysis of conical 14, 1999.

N. Yan, A. D. Regalado-magdos, B. Stiggelbout, L. Ma, and J. Lieberman, The cytosolic 618 exonuclease TREX1 inhibits the innate immune response to human immunodeficiency virus 619 type 1, Nat Immunol, vol.11, pp.1005-1018, 2010.

D. A. Jacques, W. A. Mcewan, L. Hilditch, A. J. Price, G. J. Towers et al., HIV-1 uses dynamic 621 capsid pores to import nucleotides and fuel encapsidated DNA synthesis, Nature, vol.536, p.16, 2016.

J. Rasaiyaah, C. P. Tan, A. J. Fletcher, A. J. Price, C. Blondeau et al., , p.623

L. C. James, M. Noursadeghi, and G. J. Towers, HIV-1 evades innate immune recognition 624 through specific cofactor recruitment, Nature, vol.503, pp.402-405, 2013.

M. Yamashita and M. Emerman, Capsid is a dominant determinant of retrovirus infectivity 626 in nondividing cells, J Virol, vol.78, pp.5670-5678, 2004.

V. Achuthan, J. M. Perreira, G. A. Sowd, M. Puray-chavez, W. M. Mcdougall et al., , vol.628

X. Wu, H. J. Fadel, E. M. Poeschla, A. S. Multani, S. H. Hughes et al., Capsid-CPSF6 Interaction Licenses Nuclear HIV-1 Trafficking to Sites of Viral DNA 630 Integration, Cell Host Microbe, vol.629, pp.392-404, 2018.

C. Buffone, A. Martinez-lopez, T. Fricke, S. Opp, M. Severgnini et al., , p.632

K. Skorupka, K. K. Zadrozny, B. K. Ganser-pornillos, O. Pornillos, D. Nunzio et al., , 2018.

, Nup153 Unlocks the Nuclear Pore Complex for HIV-1 Nuclear Translocation in Nondividing 634 Cells, J Virol, vol.92

D. J. Dismuke and C. Aiken, Evidence for a functional link between uncoating of the human 636 immunodeficiency virus type 1 core and nuclear import of the viral preintegration complex, J 637 Virol, vol.80, pp.3712-3732, 2006.

J. C. Valle-casuso, D. Nunzio, F. Yang, Y. Reszka, N. Lienlaf et al.,

F. Griffero, TNPO3 is required for HIV-1 replication after nuclear import but prior to 640 integration and binds the HIV-1 core, Journal of virology, vol.641, p.22, 2012.

L. Vozzolo, B. Loh, P. J. Gane, M. Tribak, L. Zhou et al., , p.642

A. Fassati, Gyrase B inhibitor impairs HIV-1 replication by targeting Hsp90 and the 643 capsid protein, J Biol Chem, vol.285, pp.39314-39342, 2010.

L. Zhou, E. Sokolskaja, C. Jolly, W. James, S. A. Cowley et al., Transportin 3 promotes a 645 nuclear maturation step required for efficient HIV-1 integration, PLoS Pathog, vol.7, p.24, 2011.

S. J. Rihn, S. J. Wilson, N. J. Loman, M. Alim, S. E. Bakker et al., Extreme genetic fragility of the HIV-1 capsid, PLoS Pathog, vol.647, p.25, 2013.

C. L. Marquez, D. Lau, J. Walsh, V. Shah, C. Mcguinness et al., , p.649

D. A. Jacques, S. Turville, and T. Bocking, Kinetics of HIV-1 capsid uncoating revealed by single, 2018.

N. Pante and M. Kann, Miller MD, Farnet CM, Bushman FD. 1997. Human immunodeficiency virus type 1 654 preintegration complexes: studies of organization and composition, Mol Biol Cell, vol.13, p.28, 2002.

N. Y. Chen, L. Zhou, P. J. Gane, S. Opp, N. J. Ball et al., , p.656

D. Diaz-griffero, F. Taylor, I. Fassati, and A. , HIV-1 capsid is involved in post-nuclear entry 657 steps, Retrovirology, vol.13, p.28, 2016.

D. A. Bejarano, K. Peng, V. Laketa, K. Borner, K. L. Jost et al., , p.659

H. G. Krausslich, HIV-1 nuclear import in macrophages is regulated by CPSF6-capsid, 2019.

C. R. Chin, J. M. Perreira, G. Savidis, J. M. Portmann, A. M. Aker et al., Direct Visualization of HIV-1 Replication Intermediates Shows that Capsid and CPSF6, vol.662, 2015.

, Modulate HIV-1 Intra-nuclear Invasion and Integration, Cell Rep, vol.13, pp.1717-1748

K. Peng, W. Muranyi, B. Glass, V. Laketa, S. R. Yant et al., , 2014.

, Quantitative microscopy of functional HIV post-entry complexes reveals association of 666 replication with the viral capsid, Elife, vol.3, p.4114

A. E. Hulme, O. Perez, and T. J. Hope, Complementary assays reveal a relationship between HIV, 2011.

Z. Bonisch, I. Dirix, L. Lemmens, V. Borrenberghs, D. et al., , p.670

F. Hendrix, J. Hofkens, J. Debyser, and Z. , Capsid labelled HIV to investigate the role of capsid 671 during nuclear import and integration, J Virol, 2020.

J. I. Mamede, G. C. Cianci, M. R. Anderson, and T. J. Hope, Early cytoplasmic uncoating is 673 associated with infectivity of HIV-1, Proc Natl Acad Sci U S A, vol.114, p.35, 2017.

R. C. Burdick, K. A. Delviks-frankenberry, J. Chen, S. K. Janaka, J. Sastri et al., , 2017.

, Dynamics and regulation of nuclear import and nuclear movements of HIV-1 complexes, PLoS, vol.676, p.1006570

A. C. Francis, M. Marin, J. Shi, C. Aiken, and G. B. Melikyan, Time-Resolved Imaging of Single HIV-678, 2016.

, Uncoating In Vitro and in Living Cells, PLoS Pathog, vol.12, p.1005709

A. C. Francis and G. B. Melikyan, Live-Cell Imaging of Early Steps of Single HIV-1 Infection, 2018.

A. C. Francis and G. B. Melikyan, Single HIV-1 Imaging Reveals Progression of Infection through 682, 2018.

, CA-Dependent Steps of Docking at the Nuclear Pore, Uncoating, and Nuclear Transport, Cell 683 Host Microbe, vol.23, pp.536-548

S. R. Yant, A. Mulato, D. Hansen, W. C. Tse, A. Niedziela-majka et al., , p.685

. Mh, J. M. Perreira, E. Singer, G. A. Papalia, E. Y. Hu et al., Ahmadyar, vol.686

S. , L. A. Yu, H. Novikov, N. Paoli, E. Gonik et al., , p.687

W. I. Sundquist, T. Cihlar, and J. O. Link, A highly potent long-acting small-molecule HIV-1 capsid 688 inhibitor with efficacy in a humanized mouse model, Nat Med, vol.25, pp.1377-1384, 2019.

K. Narayan, C. M. Danielson, K. Lagarec, B. C. Lowekamp, P. Coffman et al., , p.690

T. J. Hope and S. Subramaniam, Multi-resolution correlative focused ion beam scanning 691 electron microscopy: applications to cell biology, J Struct Biol, vol.185, pp.278-84, 2014.

C. Petit, O. Schwartz, and F. Mammano, The karyophilic properties of human 693 immunodeficiency virus type 1 integrase are not required for nuclear import of proviral DNA, 2000.

, J Virol, vol.74, pp.7119-7145

A. J. Price, D. A. Jacques, W. A. Mcewan, A. J. Fletcher, S. Essig et al., , p.696

L. C. James, Host cofactors and pharmacologic ligands share an essential interface in HIV-697 1 capsid that is lost upon disassembly, PLoS Pathog, vol.10, p.43, 2014.

G. A. Sowd, E. Serrao, H. Wang, W. Wang, H. J. Fadel et al., A critical 699 role for alternative polyadenylation factor CPSF6 in targeting HIV-1 integration to 700 transcriptionally active chromatin, Proc Natl Acad Sci U S A, vol.113, pp.1054-63, 2016.

A. Saito, D. Ferhadian, G. A. Sowd, E. Serrao, J. Shi et al., , p.702

A. N. Engelman, C. Aiken, and M. Yamashita, Roles of Capsid-Interacting Host Factors in 703, 2016.

, Multimodal Inhibition of HIV-1 by PF74, J Virol, vol.90, pp.5808-5823

A. J. Price, A. J. Fletcher, T. Schaller, T. Elliott, K. Lee et al., James 705 LC. 2012. CPSF6 defines a conserved capsid interface that modulates HIV-1 replication, PLoS, vol.706, p.1002896

C. Aiken, Pseudotyping human immunodeficiency virus type 1 (HIV-1) by the 708 glycoprotein of vesicular stomatitis virus targets HIV-1 entry to an endocytic pathway and 709 suppresses both the requirement for Nef and the sensitivity to cyclosporin A, J Virol, vol.71, pp.5871-710, 1997.

E. Bos, L. Hussaarts, J. R. Van-weering, M. H. Ellisman, H. De-wit et al., , p.712, 2014.

, Tokuyasu-style immuno-labelled sections for correlative cryo light microscopy and cryo 713 electron tomography, J Struct Biol, vol.186, pp.273-82

B. Marini, A. Kertesz-farkas, H. Ali, B. Lucic, K. Lisek et al.,

A. , M. F. Giacca, M. Lusic, and M. , Nuclear architecture dictates HIV-1 integration site 716 selection, Nature, vol.521, pp.227-258, 2015.

R. D. Stultz, J. J. Cenker, and D. Mcdonald, Imaging HIV-1 Genomic DNA from Entry through 50, 2017.

M. Puray-chavez, P. R. Tedbury, A. D. Huber, O. B. Ukah, V. Yapo et al., , p.720

S. G. Sarafianos, Multiplex single-cell visualization of nucleic acids and protein during HIV 721 infection, Nat Commun, vol.8, p.1882, 2017.

P. Bell, L. J. Montaner, and G. G. Maul, Accumulation and intranuclear distribution of 723 unintegrated human immunodeficiency virus type 1 DNA, J Virol, vol.75, pp.7683-91, 2001.

T. Komatsu, C. Quentin-froignant, C. Lagadec, F. Rayne, F. Ragues et al.,

. Rh, W. Zhang, A. Ehrhardt, K. Bystricky, R. Morin et al., In 726 vivo labelling of adenovirus DNA identifies chromatin anchoring and biphasic genome 727 replication, J Virol, 2018.

B. Mariame, S. Kappler-gratias, M. Kappler, S. Balor, F. Gallardo et al., , 2018.

, visualization and quantification of human Cytomegalovirus replication in living cells using the 730 ANCHOR DNA labeling technology, J Virol

T. G. Graham, X. Wang, D. Song, C. M. Etson, A. M. Van-oijen et al., ParB 732 spreading requires DNA bridging, Genes Dev, vol.28, pp.1228-1266, 2014.

A. Sanchez, D. I. Cattoni, J. C. Walter, J. Rech, A. Parmeggiani et al., , 2015.

, Stochastic Self-Assembly of ParB Proteins Builds the Bacterial DNA Segregation Apparatus

, Cell Syst, vol.1, pp.163-73

F. De-chaumont, S. Dallongeville, N. Chenouard, N. Herve, S. Pop et al., , p.737

P. Pankajakshan, T. Lecomte, L. Montagner, Y. Lagache, T. Dufour et al., Icy: 738 an open bioimage informatics platform for extended reproducible research, Nat Methods, vol.739, issue.9, pp.690-696, 2012.

P. Paul-gilloteaux, X. Heiligenstein, M. Belle, M. C. Domart, B. Larijani et al., , p.741

J. Salamero, eC-CLEM: flexible multidimensional registration software for correlative 742 microscopies, Nat Methods, vol.14, pp.102-103, 2017.

J. A. Briggs, M. N. Simon, I. Gross, H. G. Krausslich, S. D. Fuller et al., The 744 stoichiometry of Gag protein in HIV-1, Nat Struct Mol Biol, vol.11, p.59, 2004.

J. Gu and M. D'andrea, Comparison of detecting sensitivities of different sizes of gold 746 particles with electron-microscopic immunogold staining using atrial natriuretic peptide in 747 rat atria as a model, Am J Anat, vol.185, pp.264-70, 1989.

S. L. Butler, M. S. Hansen, and F. D. Bushman, A quantitative assay for HIV DNA integration in 749 vivo, Nat Med, vol.7, pp.631-635, 2001.

H. Saad, F. Gallardo, M. Dalvai, N. Tanguy-le-gac, D. Lane et al., DNA dynamics 751 during early double-strand break processing revealed by non-intrusive imaging of living cells, 2014.

, PLoS Genet, vol.10, p.1004187

F. Maldarelli, X. Wu, L. Su, F. R. Simonetti, W. Shao et al., , p.754

M. F. Kearney, J. M. Coffin, and S. H. Hughes, HIV latency. Specific HIV integration sites are linked 755 to clonal expansion and persistence of infected cells, Science, vol.345, pp.179-83, 2014.

R. Liu, F. R. Simonetti, and Y. C. Ho, The forces driving clonal expansion of the HIV-1 latent 757 reservoir, Virol J, vol.17, p.4, 2020.

T. W. Chun, D. Engel, M. M. Berrey, T. Shea, L. Corey et al., Early establishment of a pool 759 of latently infected, resting CD4(+) T cells during primary HIV-1 infection, Proc Natl Acad Sci U 760 S A, vol.95, pp.8869-73, 1998.

P. Charneau, G. Mirambeau, P. Roux, S. Paulous, H. Buc et al., HIV-1 reverse 762 transcription. A termination step at the center of the genome, J Mol Biol, vol.241, p.66, 1994.

J. Munch, E. Rucker, L. Standker, K. Adermann, C. Goffinet et al., , p.764

R. , R. D. Specht, A. Gimenez-gallego, G. Sanchez, P. C. Fowler et al., , p.765

W. Mothes, J. C. Grivel, L. Margolis, O. T. Keppler, W. G. Forssmann et al., Semen-766 derived amyloid fibrils drastically enhance HIV infection, Cell, vol.131, pp.1059-71, 2007.

M. Yolamanova, C. Meier, A. K. Shaytan, V. Vas, C. W. Bertoncini et al., , p.768

J. A. Muller, D. Sauter, C. Goffinet, D. Palesch, P. Walther et al., , p.769

J. Bohne, H. Schrezenmeier, K. Schwarz, L. Standker, W. G. Forssmann et al., , p.770

A. R. Khokhlov, T. P. Knowles, T. Weil, F. Kirchhoff, and J. Munch, Peptide nanofibrils boost Nanotechnol, vol.8, pp.130-136, 2013.

J. W. Slot and H. J. Geuze, Cryosectioning and immunolabeling, Nat Protoc, vol.2, p.69, 2007.

D. N. Mastronarde, Automated electron microscope tomography using robust prediction 775 of specimen movements, J Struct Biol, vol.152, pp.36-51, 2005.

J. R. Kremer, D. N. Mastronarde, and J. R. Mcintosh, Computer visualization of three-dimensional 777 image data using IMOD, J Struct Biol, vol.116, pp.71-77, 1996.

B. Forster, D. Van-de-ville, J. Berent, D. Sage, and M. Unser, Complex wavelets for extended 779 depth-of-field: a new method for the fusion of multichannel microscopy images, Microsc Res, vol.780, pp.33-42, 2004.

P. Thevenaz and M. Unser, User-friendly semiautomated assembly of accurate image 782 mosaics in microscopy, Microsc Res Tech, vol.70, pp.135-181, 2007.

, Viral reverse transcription correlates with HIV-1 CA and IN association, p.787

, Comparison of the infectivity of HIV-1 carrying the IN wild type or the IN fused to HA tag 788 analysed by beta-galactosidase assay, normalized by amount of proteins

, with 500ng of p24 of HIV-1?Env IN HA / VSV-G fixed at 6 h post infection and 790 labelled with antibodies anti-p24 (green) and anti-HA (red), host DNA is labelled by Hoechst 791 (blue), Image J and by, p.792

, Cells were fixed on 4% of PFA and labelled with 794 antibodies anti p24, anti-HA and anti-Nup153. Co-localization between CA and IN was 795 analysed by ImageJ and by Graph Pad Prism 7. (C) DNA synthesis has been evaluated by 796 qPCR through the amplification of late reverse transcripts (LRT). The infectivity was, Graph Pad Prism 7. (B), vol.797

, Effect of PF74 doses on HIV-1 CA and IN detections at 6 h post infection in HeLaP4R5 799 cells by confocal microscopy. (E) Analysis of the percentage of IN/CA

, The level of infectivity has been, vol.7, p.801