S. S. Su, Y. Tanaka, I. Samejima, K. Tanaka, and M. Yanagida, A nitrogen starvationinduced dormant G0 state in fission yeast: the establishment from uncommitted G1 state and its delay for return to proliferation, J Cell Sci, vol.109, pp.1347-57, 1996.

K. Sajiki, M. Hatanaka, T. Nakamura, K. Takeda, M. Shimanuki et al., Genetic control of cellular quiescence in S. pombe, J Cell Sci, vol.122, pp.1418-1447, 2009.

K. Takeda and M. Yanagida, In quiescence of fission yeast, autophagy and the proteasome collaborate for mitochondrial maintenance and longevity, Autophagy, vol.6, pp.564-569, 2010.

S. Marguerat, A. Schmidt, S. Codlin, W. Chen, R. Aebersold et al., Quantitative analysis of fission yeast transcriptomes and proteomes in proliferating and quiescent cells, Cell, vol.151, pp.671-83, 2012.

B. Roche, B. Arcangioli, and R. A. Martienssen, RNA interference is essential for cellular quiescence, Science, vol.354, p.11, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01868276

R. I. Joh, J. S. Khanduja, I. A. Calvo, M. Mistry, C. M. Palmieri et al., Survival in quiescence requires the euchromatic deployment of Clr4/SUV39H by argonaute-associated small RNAs, Mol Cell, vol.64, pp.1088-101, 2016.

J. A. Jaehning, The Paf1 complex: platform or player in RNA polymerase II transcription?, Biochim Biophys Acta, vol.1799, pp.379-88, 2010.

S. Bahrampour and S. Thor, Ctr9, a key component of the Paf1 complex, affects proliferation and terminal differentiation in the developing drosophila nervous system. G3 (Bethesda), vol.6, pp.3229-3268, 2016.

K. M. Kowalik, Y. Shimada, V. Flury, M. B. Stadler, J. Batki et al., The Paf1 complex represses small-RNA-mediated epigenetic gene silencing, Nature, vol.520, pp.248-52, 2015.

L. Sadeghi, P. Prasad, K. Ekwall, A. Cohen, and J. P. Svensson, The Paf1 complex factors Leo1 and Paf1 promote local histone turnover to modulate chromatin states in fission yeast, EMBO Rep, vol.16, pp.1673-87, 2015.

H. P. Cam, T. Sugiyama, E. S. Chen, X. Chen, P. C. Fitzgerald et al., Comprehensive analysis of heterochromatin-and RNAi-mediated epigenetic control of the fission yeast genome, Nat Genet, vol.37, pp.809-828, 2005.

S. Yamanaka, S. Mehta, F. E. Reyes-turcu, F. Zhuang, R. T. Fuchs et al., RNAi triggered by specialized machinery silences developmental genes and retrotransposons, Nature, vol.493, pp.557-60, 2013.

A. Cohen, A. Habib, D. Laor, S. Yadav, M. Kupiec et al., TOR complex 2 in fission yeast is required for chromatin-mediated gene silencing and assembly of heterochromatic domains at subtelomeres, J Biol Chem, vol.293, pp.8138-50, 2018.

A. Cohen, M. Kupiec, and R. Weisman, Glucose activates TORC2-Gad8 protein via positive regulation of the cAMP/cAMP-dependent protein kinase A (PKA) pathway and negative regulation of the Pmk1 protein-mitogenactivated protein kinase pathway, J Biol Chem, vol.289, pp.21727-21764, 2014.

T. Hatano, S. Morigasaki, H. Tatebe, K. Ikeda, and K. Shiozaki, Fission yeast Ryh1 GTPase activates TOR complex 2 in response to glucose, Cell Cycle, vol.14, pp.848-56, 2015.

T. Matsuo, Y. Kubo, Y. Watanabe, and M. Yamamoto, Schizosaccharomyces pombe AGC family kinase Gad8p forms a conserved signaling module with TOR and PDK1-like kinases, EMBO J, vol.22, pp.3073-83, 2003.

Y. Xu, C. Bernecky, C. T. Lee, K. C. Maier, B. Schwalb et al., Architecture of the RNA polymerase II-Paf1C-TFIIS transcription elongation complex, Nat Commun, vol.8, p.15741, 2017.

?. Fast, convenient online submission ? thorough peer review by experienced researchers in your field ? rapid publication on acceptance ? support for research data, including large and complex data types ? gold Open Access which fosters wider collaboration and increased citations maximum visibility for your research: over 100M website views per year

, Ready to submit your research ? Choose BMC and benefit from

G. Jih, N. Iglesias, M. A. Currie, N. V. Bhanu, J. A. Paulo et al., Unique roles for histone H3K9me states in RNAi and heritable silencing of transcription, Nature, vol.547, pp.463-470, 2017.

A. Cohen, M. Kupiec, and R. Weisman, Gad8 protein is found in the nucleus where it interacts with the MluI cell cycle box-binding factor (MBF) transcriptional complex to regulate the response to DNA replication stress, J Biol Chem, vol.291, pp.9371-81, 2016.

T. Matsuo, Y. Otsubo, J. Urano, F. Tamanoi, and M. Yamamoto, Loss of the TOR kinase Tor2 mimics nitrogen starvation and activates the sexual development pathway in fission yeast, Mol Cell Biol, vol.27, pp.3154-64, 2007.

K. Ekwall and G. Thon, Mating-type determination in Schizosaccharomyces pombe, Cold Spring Harb Protoc, p.91728, 2017.

M. Durand-dubief and K. Ekwall, Chromatin immunoprecipitation using microarrays, Methods Mol Biol, vol.529, pp.279-95, 2009.

J. Atkin, L. Halova, J. Ferguson, J. R. Hitchin, A. Lichawska-cieslar et al., Torin1-mediated TOR kinase inhibition reduces Wee1 levels and advances mitotic commitment in fission yeast and HeLa cells, J Cell Sci, vol.127, pp.1346-56, 2014.

, Publisher's Note

, Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations