N. Singh, B. B. Mishra, S. Bajpai, R. K. Singh, and V. K. Tiwari, Natural product based leads 1 to fight against leishmaniasis, Bioorg. Med. Chem, vol.22, issue.1, 2014.

S. Burza, S. L. Croft, M. Boelaert, and L. , Lancet, vol.392, pp.951-970, 2018.

, , pp.31204-31206

M. S. Duthie, V. S. Raman, F. M. Piazza, and S. G. Reed, The development and clinical 6 evaluation of second-generation leishmaniasis vaccines, Vaccine, vol.30, issue.2, pp.134-141, 2012.

,

O. Cordin, J. Banroques, N. K. Tanner, and P. Linder, The DEAD-box protein family of 9 RNA helicases, Gene, vol.367, pp.17-37, 2006.

P. Linder and E. Jankowsky, From unwinding to clamping -the DEAD box RNA helicase 11 family, Nat. Rev. Mol. Cell. Biol, vol.12, issue.8, pp.505-516, 2011.

N. K. Tanner and P. Linder, DExD/H box RNA helicases: from generic motors to specific 14 dissociation functions, Mol. Cell, vol.8, issue.2, pp.251-262, 2001.

M. Senissar, A. L. Saux, N. Belgareh-touze, C. Adam, J. Banroques et al., The 16 DEAD-box helicase Ded1 from yeast is an mRNP cap-associated protein that shuttles 17 between the cytoplasm and nucleus, Nucleic Acids Res, vol.42, issue.15, pp.10005-10022, 2014.

J. Cruz, D. Kressler, and P. Linder, Unwinding RNA in Saccharomyces cerevisiae: 20 DEAD-box proteins and related families, Trends Biochem. Sci, vol.24, issue.5, pp.192-198, 1999.

M. Abdelhaleem, L. Maltais, and H. Wain, The human DDX and DHX gene families of 22 putative RNA helicases, Genomics, vol.81, issue.6, pp.618-622, 2003.

P. R. Gargantini, H. D. Lujan, and C. A. Pereira, In silico analysis of trypanosomatids' 24 helicases, FEMS Microbiol. Lett, vol.335, issue.2, pp.123-129, 2012.

,

P. Schutz, T. Karlberg, S. Van-den, R. Berg, L. Collins et al., , p.27

W. Holmberg-schiavone, H. W. Tempel, M. Park, M. Hammarstrom, and . Moche, , p.28

H. Thorsell and . Schuler, Comparative structural analysis of human DEAD-box RNA 29 helicases, PLoS One, vol.5, issue.9, 2010.

L. A. Marchat, S. I. Arzola-rodriguez, O. Hernandez-de-la, and C. ,

. Lopez-camarillo, DEAD/DExH-Box RNA Helicases in Selected Human Parasites, p.32

, Korean J. Parasitol, vol.53, issue.5, pp.583-595, 2015.

W. R. Shadrick, J. Ndjomou, R. Kolli, S. Mukherjee, A. M. Hanson et al., , p.34

, Discovering new medicines targeting helicases: challenges and recent progress, J, p.35

, Biomol. Screen, vol.18, issue.7, pp.761-781, 2013.

R. Cencic and J. Pelletier, Throwing a monkey wrench in the motor: targeting DExH/D box 37 proteins with small molecule inhibitors, Biochim. Biophys. Acta, vol.1829, issue.8, pp.894-932, 2013.

L. Steimer and D. Klostermeier, RNA helicases in infection and disease, RNA Biol, vol.9, issue.6, pp.751-771, 2012.

J. Chu and J. Pelletier, Targeting the eIF4A RNA helicase as an anti-neoplastic approach, p.3

, Biochim. Biophys. Acta, vol.1849, issue.7, pp.781-791, 2015.

,

C. H. Chao, L. F. Huang, Y. L. Yang, J. H. Su, G. H. Wang et al.,

J. H. Dai and . Sheu, Polyoxygenated steroids from the gorgonian Isis hippuris, J. Nat. Prod, vol.7, issue.6, pp.880-885, 2005.

R. Cencic and J. Pelletier, Hippuristanol -A potent steroid inhibitor of eukaryotic initiation 9 factor 4A, Translation (Austin), vol.4, issue.1, p.1137381, 2016.

,

M. Barhoumi, N. K. Tanner, J. Banroques, P. Linder, and I. Guizani, Leishmania infantum, p.12
URL : https://hal.archives-ouvertes.fr/pasteur-01674361

, LeIF protein is an ATP-dependent RNA helicase and an eIF4A-like factor that inhibits 13 translation in yeast, FEBS J, vol.273, issue.22, pp.5086-5100, 2006.

R. Dhalia, N. Marinsek, C. R. Reis, R. Katz, J. R. Muniz et al., , p.16

O. P. De-melo and . Neto, The two eIF4A helicases in Trypanosoma brucei are functionally 17 distinct, Nucleic Acids Res, vol.34, issue.9, pp.2495-2507, 2006.

R. Dhalia, C. R. Reis, E. R. Freire, P. O. Rocha, R. Katz et al., , p.20

M. Neto, Translation initiation in Leishmania major: characterisation of multiple 21 eIF4F subunit homologues, Mol. Biochem. Parasitol, vol.140, issue.1, pp.23-41, 2005.

E. Harigua-souiai, Y. Z. Abdelkrim, I. Bassoumi-jamoussi, O. Zakraoui, G. Bouvier et al., , p.24

J. Essafi-benkhadir, N. Banroques, H. Desdouits, M. Munier-lehmann, and . Barhoumi, , p.25

N. K. Tanner, M. Nilges, A. Blondel, and I. Guizani, Identification of novel leishmanicidal 26 molecules by virtual and biochemical screenings targeting Leishmania eukaryotic 27 initiation factor 4A, PLoS Negl. Trop. Dis, vol.12, issue.1, p.6160, 2018.

,

P. Beuchet, L. Kihel, M. Dherbomez, G. Charles, and Y. Letourneux, Synthesis of 30 6(alpha, beta)-aminocholestanols as ergosterol biosynthesis inhibitors, Bioorg. Med

, Chem. Lett, vol.8, issue.24, pp.3627-3630, 1998.

M. Barhoumi, A. Garnaoui, B. Kaabi, N. K. Tanner, and I. Guizani, Leishmania infantum, p.33
URL : https://hal.archives-ouvertes.fr/pasteur-01674361

, LeIF and its recombinant polypeptides modulate interleukin IL-12p70, IL-10 and 34 tumour necrosis factor-alpha production by human monocytes, Parasite Immunol, vol.35, issue.10, pp.583-588, 2011.

A. Prat, S. R. Schmid, P. Buser, S. Blum, H. Trachsel et al., 37 Expression of translation initiation factor 4A from yeast and mouse in Saccharomyces 38 cerevisiae, Biochim. Biophys. Acta, vol.1050, issue.1-3, pp.140-145, 1990.

J. Banroques, M. Doere, M. Dreyfus, P. Linder, and N. K. Tanner, Motif III in superfamily 2 40 "helicases" helps convert the binding energy of ATP into a high-affinity RNA binding 41 site in the yeast DEAD-box protein Ded1, J. Mol. Biol, vol.396, issue.4, pp.949-966, 2010.

,

O. Cordin, N. K. Tanner, M. Doere, P. Linder, and J. Banroques, The newly discovered Q 3 motif of DEAD-box RNA helicases regulates RNA-binding and helicase activity

, EMBO J, vol.23, issue.13, pp.2478-2487, 2004.

D. H. Turner, N. Sugimoto, and S. M. Freier, RNA structure prediction, Annu. Rev. Biophys

, Biophys. Chem, vol.17, pp.167-192, 1988.

,

B. Lee and F. M. Richards, The interpretation of protein structures: estimation of static 9 accessibility, J. Mol. Biol, vol.55, issue.3, pp.379-400, 1971.

N. Desdouits, M. Nilges, and A. Blondel, Principal Component Analysis reveals correlation 11 of cavities evolution and functional motions in proteins, J. Mol. Graph. Model, vol.55, pp.13-24, 2015.

G. M. Morris, R. Huey, W. Lindstrom, M. F. Sanner, R. K. Belew et al., , p.14

. Olson, AutoDock4 and AutoDockTools4: Automated docking with selective receptor 15 flexibility, J. Comput. Chem, vol.30, issue.16, pp.2785-2791, 2009.

S. Shityakov and C. Forster, In silico predictive model to determine vector-mediated 18 transport properties for the blood-brain barrier choline transporter, Adv. Appl

, Bioinform. Chem, vol.7, pp.23-36, 2014.

R. A. Laskowski and M. B. Swindells, LigPlot+: multiple ligand-protein interaction 21 diagrams for drug discovery, J. Chem. Inf. Model, vol.51, issue.10, pp.2778-2786, 2011.

N. Guex and M. C. Peitsch, SWISS-MODEL and the Swiss-PdbViewer: an environment for 24 comparative protein modeling, Electrophoresis, vol.18, issue.15, pp.2714-2723, 1997.

M. Dixon, The determination of enzyme inhibitor constants, Biochem. J, vol.55, issue.1, pp.170-171, 1953.

J. R. Lorsch and D. Herschlag, The DEAD box protein eIF4A. 1. A minimal kinetic and 29 thermodynamic framework reveals coupled binding of RNA and nucleotide, Biochemistry, vol.30, issue.8, pp.2180-2193, 1998.

S. P. Ryder, M. I. Recht, and J. R. Williamson, Quantitative analysis of protein-RNA 32 interactions by gel mobility shift, Methods Mol. Biol, vol.488, pp.99-115, 2008.

,

G. Lemaire, L. Gold, and M. Yarus, Autogenous translational repression of bacteriophage 35 T4 gene 32 expression in vitro, J. Mol. Biol, vol.126, issue.1, pp.73-90, 1978.

C. F. Brayton, Dimethyl sulfoxide (DMSO): a review, Cornell Vet, vol.76, issue.1, pp.61-90, 1986.

C. Monder, Discussion: effect of DMSO on enzyme activity, Ann. N. Y. Acad. Sci. 1, vol.141, issue.1, pp.300-301, 1967.

D. H. Rammler, The effect of DMSO on several enzyme systems, Ann. N. Y. Acad. Sci, vol.3, issue.1, pp.291-299, 1967.

D. H. Rammler and A. Zaffaroni, Biological implications of DMSO based on a review of its 5 chemical properties, Ann. N. Y. Acad. Sci, vol.141, issue.1, pp.13-23, 1967.

A. Pabbathi, S. Patra, and A. Samanta, Structural transformation of bovine serum albumin 7 induced by dimethyl sulfoxide and probed by fluorescence correlation spectroscopy and 8 additional methods, Chemphyschem, vol.14, issue.11, pp.2441-2449, 2013.

,

S. Dupont, G. Lemetais, T. Ferreira, P. Cayot, P. Gervais et al., Ergosterol 11 biosynthesis: a fungal pathway for life on land?, Evolution, vol.66, issue.9, pp.2961-2968, 2012.

H. Dixon, C. D. Ginger, and J. Williamson, Trypanosome sterols and their metabolic origins, p.14

. Comp, Biochem. Physiol. B, vol.41, issue.1, pp.1-18, 1972.

S. T. De-macedo-silva, W. Souza, and J. C. Rodrigues, Sterol Biosynthesis Pathway as an 16 Alternative for the Anti-Protozoan Parasite Chemotherapy, Curr. Med. Chem, vol.22, issue.18, pp.2186-2198, 2015.

D. G. Sant, S. G. Tupe, C. V. Ramana, and M. V. Deshpande, Fungal cell membrane-19 promising drug target for antifungal therapy, J. Appl. Microbiol, vol.121, issue.6, pp.1498-1518, 2016.

S. Fouace, L. El-kihel, M. Dherbomez, and Y. Letourneux, Stereoselective synthesis of 7 22 alpha-and 7 beta-aminocholestanol as potent fungicidal drugs, p.23

. Lett, , vol.11, pp.3011-3014, 2001.

N. K. Tanner, O. Cordin, J. Banroques, M. Doere, and P. Linder, The Q motif: a newly 25 identified motif in DEAD box helicases may regulate ATP binding and hydrolysis, Mol. 26 Cell, vol.11, issue.1, pp.127-138, 2003.