N. Singh, B. B. Mishra, S. Bajpai, R. K. Singh, and V. K. Tiwari, Natural product based leads 1 to fight against leishmaniasis, Bioorg. Med. Chem, vol.22, issue.1, 2014.

S. Burza, S. L. Croft, M. Boelaert, and L. , Lancet, vol.392, pp.951-970, 2018.

, , pp.31204-31206

M. S. Duthie, V. S. Raman, F. M. Piazza, and S. G. Reed, The development and clinical 6 evaluation of second-generation leishmaniasis vaccines, Vaccine, vol.30, issue.2, pp.134-141, 2012.


O. Cordin, J. Banroques, N. K. Tanner, and P. Linder, The DEAD-box protein family of 9 RNA helicases, Gene, vol.367, pp.17-37, 2006.

P. Linder and E. Jankowsky, From unwinding to clamping -the DEAD box RNA helicase 11 family, Nat. Rev. Mol. Cell. Biol, vol.12, issue.8, pp.505-516, 2011.

N. K. Tanner and P. Linder, DExD/H box RNA helicases: from generic motors to specific 14 dissociation functions, Mol. Cell, vol.8, issue.2, pp.251-262, 2001.

M. Senissar, A. L. Saux, N. Belgareh-touze, C. Adam, J. Banroques et al., The 16 DEAD-box helicase Ded1 from yeast is an mRNP cap-associated protein that shuttles 17 between the cytoplasm and nucleus, Nucleic Acids Res, vol.42, issue.15, pp.10005-10022, 2014.

J. Cruz, D. Kressler, and P. Linder, Unwinding RNA in Saccharomyces cerevisiae: 20 DEAD-box proteins and related families, Trends Biochem. Sci, vol.24, issue.5, pp.192-198, 1999.

M. Abdelhaleem, L. Maltais, and H. Wain, The human DDX and DHX gene families of 22 putative RNA helicases, Genomics, vol.81, issue.6, pp.618-622, 2003.

P. R. Gargantini, H. D. Lujan, and C. A. Pereira, In silico analysis of trypanosomatids' 24 helicases, FEMS Microbiol. Lett, vol.335, issue.2, pp.123-129, 2012.


P. Schutz, T. Karlberg, S. Van-den, R. Berg, L. Collins et al., , p.27

W. Holmberg-schiavone, H. W. Tempel, M. Park, M. Hammarstrom, and . Moche, , p.28

H. Thorsell and . Schuler, Comparative structural analysis of human DEAD-box RNA 29 helicases, PLoS One, vol.5, issue.9, 2010.

L. A. Marchat, S. I. Arzola-rodriguez, O. Hernandez-de-la, and C. ,

. Lopez-camarillo, DEAD/DExH-Box RNA Helicases in Selected Human Parasites, p.32

, Korean J. Parasitol, vol.53, issue.5, pp.583-595, 2015.

W. R. Shadrick, J. Ndjomou, R. Kolli, S. Mukherjee, A. M. Hanson et al., , p.34

, Discovering new medicines targeting helicases: challenges and recent progress, J, p.35

, Biomol. Screen, vol.18, issue.7, pp.761-781, 2013.

R. Cencic and J. Pelletier, Throwing a monkey wrench in the motor: targeting DExH/D box 37 proteins with small molecule inhibitors, Biochim. Biophys. Acta, vol.1829, issue.8, pp.894-932, 2013.

L. Steimer and D. Klostermeier, RNA helicases in infection and disease, RNA Biol, vol.9, issue.6, pp.751-771, 2012.

J. Chu and J. Pelletier, Targeting the eIF4A RNA helicase as an anti-neoplastic approach, p.3

, Biochim. Biophys. Acta, vol.1849, issue.7, pp.781-791, 2015.


C. H. Chao, L. F. Huang, Y. L. Yang, J. H. Su, G. H. Wang et al.,

J. H. Dai and . Sheu, Polyoxygenated steroids from the gorgonian Isis hippuris, J. Nat. Prod, vol.7, issue.6, pp.880-885, 2005.

R. Cencic and J. Pelletier, Hippuristanol -A potent steroid inhibitor of eukaryotic initiation 9 factor 4A, Translation (Austin), vol.4, issue.1, p.1137381, 2016.


M. Barhoumi, N. K. Tanner, J. Banroques, P. Linder, and I. Guizani, Leishmania infantum, p.12
URL : https://hal.archives-ouvertes.fr/pasteur-01674361

, LeIF protein is an ATP-dependent RNA helicase and an eIF4A-like factor that inhibits 13 translation in yeast, FEBS J, vol.273, issue.22, pp.5086-5100, 2006.

R. Dhalia, N. Marinsek, C. R. Reis, R. Katz, J. R. Muniz et al., , p.16

O. P. De-melo and . Neto, The two eIF4A helicases in Trypanosoma brucei are functionally 17 distinct, Nucleic Acids Res, vol.34, issue.9, pp.2495-2507, 2006.

R. Dhalia, C. R. Reis, E. R. Freire, P. O. Rocha, R. Katz et al., , p.20

M. Neto, Translation initiation in Leishmania major: characterisation of multiple 21 eIF4F subunit homologues, Mol. Biochem. Parasitol, vol.140, issue.1, pp.23-41, 2005.

E. Harigua-souiai, Y. Z. Abdelkrim, I. Bassoumi-jamoussi, O. Zakraoui, G. Bouvier et al., , p.24

J. Essafi-benkhadir, N. Banroques, H. Desdouits, M. Munier-lehmann, and . Barhoumi, , p.25

N. K. Tanner, M. Nilges, A. Blondel, and I. Guizani, Identification of novel leishmanicidal 26 molecules by virtual and biochemical screenings targeting Leishmania eukaryotic 27 initiation factor 4A, PLoS Negl. Trop. Dis, vol.12, issue.1, p.6160, 2018.


P. Beuchet, L. Kihel, M. Dherbomez, G. Charles, and Y. Letourneux, Synthesis of 30 6(alpha, beta)-aminocholestanols as ergosterol biosynthesis inhibitors, Bioorg. Med

, Chem. Lett, vol.8, issue.24, pp.3627-3630, 1998.

M. Barhoumi, A. Garnaoui, B. Kaabi, N. K. Tanner, and I. Guizani, Leishmania infantum, p.33
URL : https://hal.archives-ouvertes.fr/pasteur-01674361

, LeIF and its recombinant polypeptides modulate interleukin IL-12p70, IL-10 and 34 tumour necrosis factor-alpha production by human monocytes, Parasite Immunol, vol.35, issue.10, pp.583-588, 2011.

A. Prat, S. R. Schmid, P. Buser, S. Blum, H. Trachsel et al., 37 Expression of translation initiation factor 4A from yeast and mouse in Saccharomyces 38 cerevisiae, Biochim. Biophys. Acta, vol.1050, issue.1-3, pp.140-145, 1990.

J. Banroques, M. Doere, M. Dreyfus, P. Linder, and N. K. Tanner, Motif III in superfamily 2 40 "helicases" helps convert the binding energy of ATP into a high-affinity RNA binding 41 site in the yeast DEAD-box protein Ded1, J. Mol. Biol, vol.396, issue.4, pp.949-966, 2010.


O. Cordin, N. K. Tanner, M. Doere, P. Linder, and J. Banroques, The newly discovered Q 3 motif of DEAD-box RNA helicases regulates RNA-binding and helicase activity

, EMBO J, vol.23, issue.13, pp.2478-2487, 2004.

D. H. Turner, N. Sugimoto, and S. M. Freier, RNA structure prediction, Annu. Rev. Biophys

, Biophys. Chem, vol.17, pp.167-192, 1988.


B. Lee and F. M. Richards, The interpretation of protein structures: estimation of static 9 accessibility, J. Mol. Biol, vol.55, issue.3, pp.379-400, 1971.

N. Desdouits, M. Nilges, and A. Blondel, Principal Component Analysis reveals correlation 11 of cavities evolution and functional motions in proteins, J. Mol. Graph. Model, vol.55, pp.13-24, 2015.

G. M. Morris, R. Huey, W. Lindstrom, M. F. Sanner, R. K. Belew et al., , p.14

. Olson, AutoDock4 and AutoDockTools4: Automated docking with selective receptor 15 flexibility, J. Comput. Chem, vol.30, issue.16, pp.2785-2791, 2009.

S. Shityakov and C. Forster, In silico predictive model to determine vector-mediated 18 transport properties for the blood-brain barrier choline transporter, Adv. Appl

, Bioinform. Chem, vol.7, pp.23-36, 2014.

R. A. Laskowski and M. B. Swindells, LigPlot+: multiple ligand-protein interaction 21 diagrams for drug discovery, J. Chem. Inf. Model, vol.51, issue.10, pp.2778-2786, 2011.

N. Guex and M. C. Peitsch, SWISS-MODEL and the Swiss-PdbViewer: an environment for 24 comparative protein modeling, Electrophoresis, vol.18, issue.15, pp.2714-2723, 1997.

M. Dixon, The determination of enzyme inhibitor constants, Biochem. J, vol.55, issue.1, pp.170-171, 1953.

J. R. Lorsch and D. Herschlag, The DEAD box protein eIF4A. 1. A minimal kinetic and 29 thermodynamic framework reveals coupled binding of RNA and nucleotide, Biochemistry, vol.30, issue.8, pp.2180-2193, 1998.

S. P. Ryder, M. I. Recht, and J. R. Williamson, Quantitative analysis of protein-RNA 32 interactions by gel mobility shift, Methods Mol. Biol, vol.488, pp.99-115, 2008.


G. Lemaire, L. Gold, and M. Yarus, Autogenous translational repression of bacteriophage 35 T4 gene 32 expression in vitro, J. Mol. Biol, vol.126, issue.1, pp.73-90, 1978.

C. F. Brayton, Dimethyl sulfoxide (DMSO): a review, Cornell Vet, vol.76, issue.1, pp.61-90, 1986.

C. Monder, Discussion: effect of DMSO on enzyme activity, Ann. N. Y. Acad. Sci. 1, vol.141, issue.1, pp.300-301, 1967.

D. H. Rammler, The effect of DMSO on several enzyme systems, Ann. N. Y. Acad. Sci, vol.3, issue.1, pp.291-299, 1967.

D. H. Rammler and A. Zaffaroni, Biological implications of DMSO based on a review of its 5 chemical properties, Ann. N. Y. Acad. Sci, vol.141, issue.1, pp.13-23, 1967.

A. Pabbathi, S. Patra, and A. Samanta, Structural transformation of bovine serum albumin 7 induced by dimethyl sulfoxide and probed by fluorescence correlation spectroscopy and 8 additional methods, Chemphyschem, vol.14, issue.11, pp.2441-2449, 2013.


S. Dupont, G. Lemetais, T. Ferreira, P. Cayot, P. Gervais et al., Ergosterol 11 biosynthesis: a fungal pathway for life on land?, Evolution, vol.66, issue.9, pp.2961-2968, 2012.

H. Dixon, C. D. Ginger, and J. Williamson, Trypanosome sterols and their metabolic origins, p.14

. Comp, Biochem. Physiol. B, vol.41, issue.1, pp.1-18, 1972.

S. T. De-macedo-silva, W. Souza, and J. C. Rodrigues, Sterol Biosynthesis Pathway as an 16 Alternative for the Anti-Protozoan Parasite Chemotherapy, Curr. Med. Chem, vol.22, issue.18, pp.2186-2198, 2015.

D. G. Sant, S. G. Tupe, C. V. Ramana, and M. V. Deshpande, Fungal cell membrane-19 promising drug target for antifungal therapy, J. Appl. Microbiol, vol.121, issue.6, pp.1498-1518, 2016.

S. Fouace, L. El-kihel, M. Dherbomez, and Y. Letourneux, Stereoselective synthesis of 7 22 alpha-and 7 beta-aminocholestanol as potent fungicidal drugs, p.23

. Lett, , vol.11, pp.3011-3014, 2001.

N. K. Tanner, O. Cordin, J. Banroques, M. Doere, and P. Linder, The Q motif: a newly 25 identified motif in DEAD box helicases may regulate ATP binding and hydrolysis, Mol. 26 Cell, vol.11, issue.1, pp.127-138, 2003.