M. Aili, E. L. Isaksson, B. Hallberg, H. Wolf-watz, and R. Rosqvist, Functional analysis of the YopE GTPase-activating protein (GAP) activity of Yersinia pseudotuberculosis, Cell Microbiol, vol.8, pp.1020-1033, 2006.

K. Aktories, Bacterial protein toxins that modify host regulatory GTPases, Nat. Rev. Microbiol, vol.9, pp.487-498, 2011.

K. Aktories, A. E. Lang, C. Schwan, and H. G. Mannherz, Actin as target for modification by bacterial protein toxins, FEBS J, vol.278, pp.4526-4543, 2011.

J. K. Alan, A. C. Berzat, B. J. Dewar, L. M. Graves, and A. D. Cox, Regulation of the Rho family small GTPase Wrch-1/RhoU by C-terminal tyrosine phosphorylation requires Src, Mol. Cell Biol, vol.30, pp.4324-4338, 2010.

E. Andrio, R. Lotte, D. Hamaoui, J. Cherfils, A. Doye et al., Identification of cancer-associated missense mutations in hace1 that impair cell growth control and Rac1 ubiquitylation, Sci. Rep, vol.7, p.44779, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-02448600

A. A. Angus, D. J. Evans, J. T. Barbieri, and S. M. Fleiszig, The ADP-ribosylation domain of Pseudomonas aeruginosa ExoS is required for membrane bleb niche formation and bacterial survival within epithelial cells, Infect. Immun, vol.78, pp.4500-4510, 2010.

D. F. Aubert, H. Xu, J. Yang, X. Shi, W. Gao et al., A Burkholderia type VI effector deamidates Rho GTPases to activate the pyrin inflammasome and trigger inflammation, Cell Host Microbe, vol.19, pp.1-11, 2016.

S. Bhogaraju, S. Kalayil, Y. Liu, F. Bonn, T. Colby et al., Phosphoribosylation of ubiquitin promotes serine ubiquitination and impairs conventional ubiquitination, Cell, vol.167, pp.1636-1649, 2016.

P. Boquet and E. Lemichez, Bacterial virulence factors targeting Rho GTPases: parasitism or symbiosis?, Trends Cell Biol, vol.13, pp.238-246, 2003.

A. Boureux, E. Vignal, S. Faure, and P. Fort, Evolution of the Rho family of ras-like GTPases in eukaryotes, Mol Biol Evol, vol.24, pp.203-216, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00203003

B. Bryan, Y. Cai, K. Wrighton, G. Wu, X. H. Feng et al., Ubiquitination of RhoA by Smurf1 promotes neurite outgrowth, FEBS Lett, vol.579, pp.1015-1019, 2005.

E. Buc, D. Dubois, P. Sauvanet, J. Raisch, J. Delmas et al., High prevalence of mucosa-associated E. coli producing cyclomodulin and genotoxin in colon cancer, PLoS One, vol.8, p.56964, 2013.

E. Caron and A. Hall, Identification of two distinct mechanisms of phagocytosis controlled by different Rho GTPases, Science, vol.282, pp.1717-1721, 1998.

S. M. Ellerbroek, K. Wennerberg, and K. Burridge, Serine phosphorylation negatively regulates RhoA in vivo, J. Biol. Chem, vol.278, pp.19023-19031, 2003.

G. Flatau, E. Lemichez, M. Gauthier, P. Chardin, S. Paris et al., Toxin-induced activation of the G protein p21 Rho by deamidation of glutamine, Nature, vol.387, pp.729-733, 1997.

M. A. Forget, R. R. Desrosiers, D. Gingras, and R. Beliveau, Phosphorylation states of Cdc42 and RhoA regulate their interactions with Rho GDP dissociation inhibitor and their extraction from biological membranes, Biochem. J, vol.361, pp.243-254, 2002.

J. E. Fraylick, E. A. Rucks, D. M. Greene, T. S. Vincent, and J. C. Olson, Eukaryotic cell determination of ExoS ADP-ribosyltransferase substrate specificity, Biochem. Biophys. Res. Commun, vol.291, pp.91-100, 2002.

J. E. Galan, Common themes in the design and function of bacterial effectors, Cell Host Microbe, vol.5, pp.571-579, 2009.

E. T. Goka and M. E. Lippman, Loss of the E3 ubiquitin ligase HACE1 results in enhanced Rac1 signaling contributing to breast cancer progression, Oncogene, vol.34, pp.5395-5405, 2015.

C. Guilluy, M. Rolli-derkinderen, L. Loufrani, A. Bourge, D. Henrion et al., Ste20-related kinase SLK phosphorylates Ser188 of RhoA to induce vasodilation in response to angiotensin II type 2 receptor activation, Circ. Res, vol.102, pp.1265-1274, 2008.

R. G. Hodge and A. J. Ridley, Regulating Rho GTPases and their regulators, Nat. Rev. Mol. Cell Biol, vol.17, pp.496-510, 2016.

A. Ingmundson, A. Delprato, D. G. Lambright, and C. R. Roy, Legionella pneumophila proteins that regulate Rab1 membrane cycling, Nature, vol.450, pp.365-369, 2007.

T. Jank, X. Bogdanovic, C. Wirth, E. Haaf, M. Spoerner et al., A bacterial toxin catalyzing tyrosine glycosylation of Rho and deamidation of Gq and Gi proteins, Nat. Struct. Mol. Biol, vol.20, pp.1273-1280, 2013.

I. Just, J. Selzer, M. Wilm, C. Streiber, M. Mann et al., Glucosylation of Rho proteins by Clostridium difficile toxin B, Nature, vol.375, pp.500-503, 1995.

T. Kwon, D. Y. Kwon, J. Chun, J. H. Kim, and S. S. Kang, Akt protein kinase inhibits Rac1-GTP binding through phosphorylation at serine 71 of Rac1, J. Biol. Chem, vol.275, pp.423-428, 2000.

A. E. Lang, G. Schmidt, A. Schlosser, T. D. Hey, I. M. Larrinua et al., Photorhabdus luminescens toxins ADP-ribosylate actin and RhoA to force actin clustering, Science, vol.327, pp.1139-1142, 2010.

P. Lang, F. Gesbert, M. Delespine-carmagnat, R. Stancou, M. Pouchelet et al., Protein kinase A phosphorylation of RhoA mediates the morphological and functional effects of cyclic AMP in cytotoxic lymphocytes, EMBO J, vol.15, pp.510-519, 1996.

E. Lemichez and K. Aktories, Hijacking of Rho GTPases during bacterial infection, Exp. Cell Res, vol.319, pp.2329-2336, 2013.

E. Lemichez and J. T. Barbieri, General aspects and recent advances on bacterial protein toxins, Cold Spring Harb. Perspect. Med, vol.3, pp.1-13, 2013.

M. Lerm, J. Selzer, A. Hoffmeyer, U. R. Rapp, K. Aktories et al., Deamidation of Cdc42 and Rac by Escherichia coli cytotoxic necrotizing factor 1: activation of c-Jun N-terminal kinase in HeLa cells, Infect. Immun, vol.67, pp.496-503, 1999.

M. Liu, F. Bi, X. Zhou, and Y. Zheng, Rho GTPase regulation by miRNAs and covalent modifications, Trends Cell Biol, vol.22, pp.365-373, 2012.

M. M. López-de-armentia, C. Amaya, and M. I. Colombo, Rab GTPases and the autophagy pathway: bacterial targets for a suitable biogenesis and trafficking of their own vacuoles, Cells, vol.5, p.11, 2016.

K. Lu, P. Li, M. Zhang, G. Xing, X. Li et al., Pivotal role of the C2 domain of the Smurf1 ubiquitin ligase in substrate selection, J. Biol. Chem, vol.286, pp.16861-16870, 2011.

M. Masuda, L. Betancourt, T. Matsuzawa, T. Kashimoto, T. Takao et al., Activation of rho through a cross-link with polyamines catalyzed by Bordetella dermonecrotizing toxin, EMBO J, vol.19, pp.521-530, 2000.

A. Mettouchi and E. Lemichez, Ubiquitylation of active Rac1 by the E3 ubiquitinligase HACE1, Small GTPases, vol.3, pp.102-106, 2012.

S. Mukherjee, X. Liu, K. Arasaki, J. Mcdonough, J. E. Galán et al., Modulation of Rab GTPase function by a protein phosphocholine transferase, Nature, vol.477, pp.103-106, 2011.

M. P. Müller, H. Peters, J. Blümer, W. Blankenfeldt, R. S. Goody et al., The Legionella effector protein DrrA AMPylates the membrane traffic regulator Rab1b, Science, vol.329, pp.946-949, 2010.

I. Navarro-lérida, S. Sánchez-perales, M. Calvo, C. Rentero, Y. Zheng et al., A palmitoylation switch mechanism regulates Rac1 function and membrane organization, EMBO J, vol.31, pp.534-551, 2012.

L. Navarro, A. Koller, R. Nordfelth, H. Wolf-watz, S. Taylor et al., Identification of a molecular target for the Yersinia protein kinase A, Mol. Cell, vol.26, pp.465-477, 2007.

C. D. Nobes and A. Hall, Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia, Cell, vol.81, pp.53-62, 1995.

N. Nusser, E. Gosmanova, N. Makarova, Y. Fujiwara, L. Yang et al., Serine phosphorylation differentially affects RhoA binding to effectors: implications to NGF-induced neurite outgrowth, Cell Signal, vol.18, pp.704-714, 2006.

M. F. Olson, Rho GTPases, their post-translational modifications, disease-associated mutations and pharmacological inhibitors, 2016.

B. Ozdamar, R. Bose, M. Barrios-rodiles, H. R. Wang, Y. Zhang et al., Regulation of the polarity protein Par6 by TGFbeta receptors controls epithelial cell plasticity, Science, vol.307, pp.1603-1609, 2005.

Y. H. Park, G. Wood, D. L. Kastner, C. , and J. J. , Pyrin inflammasome activation and RhoA signaling in the autoinflammatory diseases FMF and HIDS, Nat. Immunol, vol.17, pp.914-921, 2016.

H. F. Paterson, A. J. Self, M. D. Garrett, I. Just, K. Aktories et al., Microinjection of recombinant p21rho induces rapid changes in cell morphology, J. Cell Biol, vol.111, pp.1001-1007, 1990.

M. R. Popoff, G. Prehna, M. I. Ivanov, J. B. Bliska, and C. E. Stebbins, Bacterial factors exploit eukaryotic Rho GTPase signaling cascades to promote invasion and proliferation within their host. Small GTPases 5, e28209, Cell, vol.126, pp.869-880, 2006.
URL : https://hal.archives-ouvertes.fr/pasteur-01797609

J. Qiu, M. J. Sheedlo, K. Yu, Y. Tan, E. S. Nakayasu et al., Ubiquitination independent of E1 and E2 enzymes by bacterial effectors, Nature, vol.533, pp.120-124, 2016.

R. Rafikov, C. Dimitropoulou, S. Aggarwal, A. Kangath, C. Gross et al., Lipopolysaccharideinduced lung injury involves the nitration-mediated activation of RhoA, J. Biol. Chem, vol.289, pp.4710-4722, 2014.

A. J. Ridley and A. Hall, The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors, Cell, vol.70, pp.389-399, 1992.

A. J. Ridley, H. F. Paterson, C. L. Johnston, D. Diekmann, and A. Hall, The small GTP-binding protein rac regulates growth factor-induced membrane ruffling, Cell, vol.70, pp.401-410, 1992.

M. Rolli-derkinderen, V. Sauzeau, L. Boyer, E. Lemichez, C. Baron et al., Phosphorylation of serine 188 protects RhoA from ubiquitin/proteasome-mediated degradation in vascular smooth muscle cells, Circ. Res, vol.96, pp.1152-1160, 2005.
URL : https://hal.archives-ouvertes.fr/inserm-00000098

B. Rotblat, A. L. Southwell, D. E. Ehrnhoefer, N. H. Skotte, M. Metzler et al., HACE1 reduces oxidative stress and mutant Huntingtin toxicity by promoting the NRF2 response, Proc. Natl. Acad. Sci. USA, vol.111, pp.3032-3037, 2014.

J. Saras, P. Wollberg, A. , and P. , Wrch1 is a GTPase-deficient Cdc42-like protein with unusual binding characteristics and cellular effects, Exp. Cell Res, vol.299, pp.356-369, 2004.

G. Schmidt, P. Sehr, M. Wilm, J. Selzer, M. Mann et al., Gln 63 of Rho is deamidated by Escherichia coli cytotoxic necrotizing factor-1, Nature, vol.387, pp.725-729, 1997.

T. J. Schoberle, L. K. Chung, J. B. Mcphee, B. Bogin, and J. B. Bliska, Uncovering an important role for YopJ in the inhibition of caspase-1 in activated macrophages and promoting Yersinia pseudotuberculosis virulence, Infect. Immun, vol.84, pp.1062-1072, 2016.

A. Sekine, M. Fujiwara, and S. Narumiya, Asparagine residue in the rho gene product is the modification site for botulinum ADP-ribosyltransferase, J. Biol. Chem, vol.264, pp.8602-8605, 1989.

J. Selzer, F. Hofmann, G. Rex, M. Wilm, M. Mann et al., Clostridium novyi alpha-toxin-catalyzed incorporation of GlcNAc into Rho subfamily proteins, J. Biol. Chem, vol.271, pp.25173-25177, 1996.

F. Shao, P. O. Vacratsis, Z. Bao, K. E. Bowers, C. A. Fierke et al., Biochemical characterization of the Yersinia YopT protease: cleavage site and recognition elements in Rho GTPases, Proc. Natl. Acad. Sci. USA, vol.100, pp.904-909, 2003.

T. Su, S. Straight, L. Bao, X. Xie, C. L. Lehner et al., PKC ? phosphorylates and mediates the cell membrane localization of RhoA, ISRN Oncol, p.329063, 2013.

K. N. Swatek and D. Komander, Ubiquitin modifications, Cell Res, vol.26, pp.399-422, 2016.

Y. Tan, R. J. Arnold, and Z. Q. Luo, Legionella pneumophila regulates the small GTPase Rab1 activity by reversible phosphorylcholination, Proc. Natl. Acad. Sci. USA, vol.108, pp.21212-21217, 2011.

Y. Tan and Z. Q. Luo, Legionella pneumophila SidD is a deAMPylase that modifies Rab1, Nature, vol.475, pp.506-509, 2011.

J. Tong, L. Li, B. Ballermann, W. , and Z. , Phosphorylation of Rac1 T108 by extracellular signal-regulated kinase in response to epidermal growth factor: a novel mechanism to regulate Rac1 function, Mol. Cell Biol, vol.33, pp.4538-4551, 2013.

S. Torrino, O. Visvikis, A. Doye, L. Boyer, C. Stefani et al., The E3 ubiquitin-ligase HACE1 catalyzes the ubiquitylation of active Rac1, Dev. Cell, vol.21, pp.959-965, 2011.

L. Tortola, R. Nitsch, M. J. Bertrand, M. Kogler, Y. Redouane et al., The tumor suppressor Hace1 is a critical regulator of TNFR1-mediated cell fate, Cell Rep, vol.15, pp.1481-1492, 2016.

J. E. Trosky, A. D. Liverman, and K. Orth, Yersinia outer proteins: Yops, Cell Microbiol, vol.10, pp.557-565, 2008.

S. Tu, W. J. Wu, J. Wang, and R. A. Cerione, Epidermal growth factor-dependent regulation of Cdc42 is mediated by the Src tyrosine kinase, J. Biol. Chem, vol.278, pp.49293-49300, 2003.

O. Visvikis, M. P. Maddugoda, and E. Lemichez, Direct modifications of Rho proteins: deconstructing GTPase regulation, Biol. Cell, vol.102, pp.377-389, 2010.

D. J. Walther, J. U. Peter, S. Winter, M. Holtje, N. Paulmann et al., Serotonylation of small GTPases is a signal transduction pathway that triggers platelet alpha-granule release, Cell, vol.115, pp.851-862, 2003.

A. Wandinger-ness and M. Zerial, Rab proteins and the compartmentalization of the endosomal system, Cold Spring Harb. Perspect. Biol, vol.6, 2014.

H. R. Wang, Y. Zhang, B. Ozdamar, A. A. Ogunjimi, E. Alexandrova et al., Regulation of cell polarity and protrusion formation by targeting RhoA for degradation, Science, vol.302, pp.1775-1779, 2003.

J. Wei, R. K. Mialki, S. Dong, A. Khoo, R. K. Mallampalli et al., A new mechanism of RhoA ubiquitination and degradation: roles of SCF(FBXL19) E3 ligase and Erk2, Biochim. Biophys. Acta, vol.1833, pp.2757-2764, 2013.

R. A. Welch, Uropathogenic Escherichia coli-associated exotoxins, Microbiol. Spectr, vol.4, 2016.

A. Wittinghofer and I. R. Vetter, Structure-function relationships of the G domain, a canonical switch motif, Annu. Rev. Biochem, vol.80, pp.943-971, 2011.

C. A. Worby, S. Mattoo, R. P. Kruger, L. B. Corbeil, A. Koller et al., The fic domain: regulation of cell signaling by adenylylation, Mol. Cell, vol.34, pp.93-103, 2009.

H. Xu, J. Yang, W. Gao, L. Li, P. Li et al., Innate immune sensing of bacterial modifications of Rho GTPases by the pyrin inflammasome, Nature, vol.513, pp.237-241, 2014.

M. L. Yarbrough, Y. Li, L. N. Kinch, N. V. Grishin, H. L. Ball et al., AMPylation of Rho GTPases by Vibrio VopS disrupts effector binding and downstream signaling, Science, vol.323, pp.269-272, 2009.

X. Yu, A. R. Woolery, P. Luong, Y. H. Hao, M. Grammel et al., Copper-catalyzed azide-alkyne cycloaddition (click chemistry)-based detection of global pathogen-host AMPylation on selfassembled human protein microarrays, Mol. Cell Proteom, vol.13, pp.3164-3176, 2014.

L. Zhang, M. S. Anglesio, M. O'sullivan, F. Zhang, G. Yang et al., The E3 ligase HACE1 is a critical chromosome 6q21 tumor suppressor involved in multiple cancers, Nat. Med, vol.13, pp.1060-1069, 2007.

L. Zhang, X. Chen, P. Sharma, M. Moon, A. D. Sheftel et al., HACE1-dependent protein degradation provides cardiac protection in response to haemodynamic stress, Nat. Commun, vol.5, p.3430, 2014.

J. Zhao, R. K. Mialki, J. Wei, T. A. Coon, C. Zou et al., SCF E3 ligase F-box protein complex SCF(FBXL19) regulates cell migration by mediating Rac1 ubiquitination and degradation, FASEB J, vol.27, pp.2611-2619, 2013.

Y. Zhao and F. Shao, Diverse mechanisms for inflammasome sensing of cytosolic bacteria and bacterial virulence, Curr. Opin. Microbiol, vol.29, pp.37-42, 2016.