. Sigma-aldrich, Debris and inclusion bodies were removed by centrifugation (20 min, 16,000 ? g), and His-tagged Bgl2p from the lysate was purified using nickel beads. An Amicon cell (Millipore) (3-kDa cutoff) was used to concentrate the sample and to change the buffer to HBS (20 mM HEPES

, To 100 g of ?-(1,3)-oligomers, 2.5 g each of Gas1p and Bgl2p were added, separately or together, in 20 mM acetate buffer (pH 5.5) (in a total volume of 100 l), and the reaction mixture was incubated at 37°C for different time intervals

A. Beauvais, T. Fontaine, V. Aimanianda, and J. P. Latgé, Aspergillus cell wall and biofilm, Mycopathologia, vol.178, pp.371-377, 2014.

S. J. Free, Fungal cell wall organization and biosynthesis, Adv Genet, vol.81, pp.33-82, 2013.

T. Fontaine, C. Simenel, G. Dubreucq, O. Adam, M. Delepierre et al., Molecular organization of the alkali-insoluble fraction of aspergillus fumigatus cell wall, J Biol Chem, vol.275, p.41528, 2000.

A. Gastebois, C. Clavaud, V. Aimanianda, and J. P. Latgé, Aspergillus fumigatus: cell wall polysaccharides, their biosynthesis and organization, Future Microbiol, vol.4, pp.583-595, 2009.

P. Mateos and A. Domínguez, Ultrastructure and cell wall composition in cell division cycle mutants of Schizosaccharomyces pombe deficient in septum formation, Antonie Van Leeuwenhoek, vol.59, pp.155-165, 1991.

P. Orlean, Architecture and biosynthesis of the Saccharomyces cerevisiae cell wall, Genetics, vol.192, pp.775-818, 2012.

V. Aimanianda, C. Clavaud, C. Simenel, T. Fontaine, M. Delepierre et al., Cell wall beta-(1,6)-glucan of Saccharomyces cerevisiae: structural characterization and in situ synthesis, J Biol Chem, vol.284, pp.13401-13412, 2009.
URL : https://hal.archives-ouvertes.fr/pasteur-00512054

A. Beauvais, J. M. Bruneau, P. C. Mol, M. J. Buitrago, R. Legrand et al., Glucan synthase complex of Aspergillus fumigatus, J Bacteriol, vol.183, pp.2273-2279, 2001.

A. Beauvais, R. Drake, K. Ng, M. Diaquin, and J. P. Latgé, Characterization of the 1,3-beta-glucan synthase of Aspergillus fumigatus, J Gen Microbiol, vol.139, pp.3071-3078, 1993.

C. M. Douglas, J. A. Ippolito, G. J. Shei, M. Meinz, J. Onishi et al., Identification of the FKS1 gene of Candida albicans as the essential target of 1,3-beta-D-glucan synthase inhibitors, Antimicrob Agents Chemother, vol.41, pp.2471-2479, 1997.

S. B. Inoue, N. Takewaki, T. Takasuka, T. Mio, M. Adachi et al., Characterization and gene cloning of 1,3-beta-D-glucan synthase from Saccharomyces cerevisiae, 1995.

, Eur J Biochem, vol.231, pp.845-854

I. Mouyna, T. Fontaine, M. Vai, M. Monod, W. A. Fonzi et al., Glycosylphosphatidylinositol-anchored glucanosyltransferases play an active role in the biosynthesis of the fungal cell wall, J Biol Chem, vol.275, pp.14882-14889, 2000.

E. Ragni, T. Fontaine, C. Gissi, J. P. Latgè, and L. Popolo, The Gas family of proteins of Saccharomyces cerevisiae: characterization and evolutionary analysis, Yeast, vol.24, pp.297-308, 2007.

A. F. Ram, J. C. Kapteyn, R. C. Montijn, L. H. Caro, J. E. Douwes et al., Loss of the plasma membrane-bound protein Gas1p in Saccharomyces cerevisiae results in the release of beta1,3-glucan into the medium and induces a compensation mechanism to ensure cell wall integrity, J Bacteriol, vol.180, pp.1418-1424, 1998.

E. Ragni, A. Coluccio, E. Rolli, J. M. Rodriguez-peña, G. Colasante et al., GAS2 and GAS4, a pair of developmentally regulated genes required for spore wall assembly in Saccharomyces cerevisiae, Eukaryot Cell, vol.6, pp.302-316, 2007.

A. Gastebois, T. Fontaine, J. P. Latgé, and I. Mouyna, , 2010.

, Glucanosyltransferase Gel4p is essential for Aspergillus fumigatus, Eukaryot Cell, vol.9, pp.1294-1298

I. Mouyna, W. Morelle, M. Vai, M. Monod, B. Léchenne et al., Deletion of GEL2 encoding for a beta(1-3)glucanosyltransferase affects morphogenesis and virulence in Aspergillus fumigatus, Mol Microbiol, vol.56, pp.1675-1688, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00093541

L. Popolo, M. Vai, E. Gatti, S. Porello, P. Bonfante et al., Physiological analysis of mutants indicates involvement of the Saccharomyces cerevisiae GPI-anchored protein gp115 in morphogenesis and cell separation, J Bacteriol, vol.175, pp.1879-1885, 1993.

A. Gastebois, I. Mouyna, C. Simenel, C. Clavaud, B. Coddeville et al., Characterization of a new beta(1-3)-glucan branching activity of Aspergillus fumigatus, J Biol Chem, vol.285, pp.2386-2396, 2010.

A. V. Sarthy, T. Mcgonigal, M. Coen, D. J. Frost, J. A. Meulbroek et al., Phenotype in Candida albicans of a disruption of the BGL2 gene encoding a 1,3-beta-glucosyltransferase, Microbiology, vol.143, pp.367-376, 1997.

R. C. Goldman, P. A. Sullivan, D. Zakula, and J. O. Capobianco, Kinetics of beta-1,3 glucan interaction at the donor and acceptor sites of the fungal glucosyltransferase encoded by the BGL2 gene, Eur J Biochem, vol.227, pp.372-378, 1995.

I. Mouyna, R. P. Hartland, T. Fontaine, M. Diaquin, C. Simenel et al., A 1,3-beta-glucanosyltransferase isolated from the cell wall of Aspergillus fumigatus is a homologue of the yeast Bgl2p, Microbiology, vol.144, pp.3171-3180, 1998.

T. S. Kalebina, T. A. Plotnikova, E. V. Karpova, and I. S. Kulaev, A new phenotypic manifestation of deletion of the BGL2 gene encoding glucanotransferase of the Saccharomyces cerevisiae cell wall, Mikrobiologiia, vol.75, pp.717-719, 2006.

V. Mrsa, F. Klebl, and W. Tanner, Purification and characterization of the Saccharomyces cerevisiae BGL2 gene product, a cell wall endo-beta-1,3-glucanase, J Bacteriol, vol.175, pp.2102-2106, 1993.

V. V. Zverlov, I. Y. Volkov, T. V. Velikodvorskaya, and W. H. Schwarz, Highly thermostable endo-1,3-beta-glucanase (laminarinase) LamA from Thermotoga neapolitana: nucleotide sequence of the gene and characterization of the recombinant gene product, Microbiology, vol.143, pp.1701-1708, 1997.

L. Yu, R. Goldman, P. Sullivan, G. F. Walker, and S. W. Fesik, Heteronuclear NMR studies of 13C-labeled yeast cell wall beta-glucan oligosaccharides, J Biomol NMR, vol.3, pp.429-441, 1993.

D. J. Manners, A. J. Masson, and J. C. Patterson, The structure of a beta-(1 leads to 3)-D-glucan from yeast cell walls, Biochem J, vol.135, pp.19-30, 1973.

T. S. Kalebina, V. Farkas, D. K. Laurinavichiute, P. M. Gorlovoy, G. V. Fominov et al., Deletion of BGL2 results in an increased chitin level in the cell wall of Saccharomyces cerevisiae, Antonie Van Leeuwenhoek, vol.84, pp.179-184, 2003.

L. Popolo, D. Gilardelli, P. Bonfante, and M. Vai, Increase in chitin as an essential response to defects in assembly of cell wall polymers in the ggp1delta mutant of Saccharomyces cerevisiae, J Bacteriol, vol.179, pp.463-469, 1997.

P. Magnelli, J. F. Cipollo, and C. Abeijon, A refined method for the determination of Saccharomyces cerevisiae cell wall composition and beta-1,6-glucan fine structure, Anal Biochem, vol.301, pp.136-150, 2002.

C. Ballou, Structure and biosynthesis of the mannan component of the yeast cell envelope, Adv Microb Physiol, vol.14, pp.60227-60228, 1976.

M. Osumi, The ultrastructure of yeast: cell wall structure and formation, Micron, vol.29, pp.72-75, 1998.

S. Shahinian, G. J. Dijkgraaf, A. M. Sdicu, D. Y. Thomas, C. A. Jakob et al., Involvement of protein N-glycosyl chain glucosylation and processing in the biosynthesis of cell wall beta-1,6-glucan of Saccharomyces cerevisiae, Genetics, vol.149, pp.843-856, 1998.

J. N. Levinson, S. Shahinian, A. M. Sdicu, D. C. Tessier, and H. Bussey, Functional, comparative and cell biological analysis of Saccharomyces cerevisiae Kre5p, Yeast, vol.19, pp.1243-1259, 2002.

C. Boone, A. Sdicu, M. Laroche, and H. Bussey, Isolation from Candida albicans of a functional homolog of the Saccharomyces cerevisiae KRE1 gene, which is involved in cell wall beta-glucan synthesis, J Bacteriol, vol.173, pp.6859-6864, 1991.

G. Lesage and H. Bussey, Cell wall assembly in Saccharomyces cerevisiae, Microbiol Mol Biol Rev, vol.70, pp.317-343, 2006.

R. C. Montijn, E. Vink, W. H. Müller, A. J. Verkleij, H. Van-den-ende et al., Localization of synthesis of beta1,6-glucan in Saccharomyces cerevisiae, J Bacteriol, vol.181, pp.7414-7420, 1999.

C. Boone, S. S. Sommer, A. Hensel, and H. Bussey, Yeast KRE genes provide evidence for a pathway of cell wall beta-glucan assembly, J Cell Biol, vol.110, pp.1833-1843, 1990.

P. Meaden, K. Hill, J. Wagner, D. Slipetz, S. S. Sommer et al., The yeast KRE5 gene encodes a probable endoplasmic reticulum protein required for (1-6)-beta-D-glucan synthesis and normal cell growth, Mol Cell Biol, vol.10, pp.3013-3019, 1990.

T. Kurita, Y. Noda, T. Takagi, M. Osumi, and K. Yoda, Kre6 protein essential for yeast cell wall beta-1,6-glucan synthesis accumulates at sites of polarized growth, J Biol Chem, vol.286, pp.7429-7438, 2011.

T. Roemer and H. Bussey, Yeast Kre1p is a cell surface O-glycoprotein, 1995.

, Mol Gen Genet, vol.249, pp.209-216

T. Kurita, Y. Noda, and K. Yoda, Action of multiple endoplasmic reticulum chaperon-like proteins is required for proper folding and polarized localization of Kre6 protein essential in yeast cell wall beta-1,6-glucan synthesis, J Biol Chem, vol.287, pp.17415-17424, 2012.

S. Shahinian and H. Bussey, beta-1,6-Glucan synthesis in Saccharomyces cerevisiae, Mol Microbiol, vol.35, pp.477-489, 2000.

M. H. Valdivieso, L. Ferrario, M. Vai, A. Duran, and L. Popolo, Chitin synthesis in a gas1 mutant of Saccharomyces cerevisiae, J Bacteriol, vol.182, pp.4752-4757, 2000.

J. M. Rodríguez-peña, V. J. Cid, J. Arroyo, and C. Nombela, A novel family of cell wall-related proteins regulated differently during the yeast life cycle, Mol Cell Biol, vol.20, pp.3245-3255, 2000.

N. Blanco, A. B. Sanz, J. M. Rodríguez-peña, C. Nombela, V. Farka? et al., Structural and functional analysis of yeast Crh1 and Crh2 transglycosylases, FEBS J, vol.282, pp.715-731, 2015.

E. Cabib, N. Blanco, C. Grau, J. M. Rodríguez-peña, and J. Arroyo, Crh1p and Crh2p are required for the cross-linking of chitin to beta(1-6)glucan in the Saccharomyces cerevisiae cell wall, Mol Microbiol, vol.63, pp.921-935, 2007.

T. A. Plotnikova, I. O. Selyakh, T. S. Kalebina, and I. S. Kulaev, Bgl2p and Gas1p are the major glucan transferases forming the molecular ensemble of yeast cell wall, Dokl Biochem Biophys, vol.409, pp.244-247, 2006.

E. A. Toth and T. O. Yeates, The structure of adenylosuccinate lyase, an enzyme with dual activity in the de novo purine biosynthetic pathway, Structure, vol.8, pp.92-99, 2000.

A. Klöckner, C. Otten, A. Derouaux, W. Vollmer, H. Bühl et al., AmiA is a penicillin target enzyme with dual activity in the intracellular pathogen Chlamydia pneumoniae, Nat Commun, vol.5, p.4201, 2014.

S. Lahiri, A. Basu, S. Sengupta, S. Banerjee, T. Dutta et al., Purification and characterization of a trehalaseinvertase enzyme with dual activity from Candida utilis, Arch Biochem Biophys, vol.522, pp.90-99, 2012.

F. M. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman et al., 2002. Short protocols in molecular biology

D. S. Wishart, C. G. Bigam, J. Yao, F. Abildgaard, H. J. Dyson et al., 1H, 13C and 15N chemical shift referencing in biomolecular NMR, J Biomol NMR, vol.6, pp.135-140, 1995.

M. Rance, O. W. Sørensen, G. Bodenhausen, G. Wagner, R. R. Ernst et al., Improved spectral resolution in cosy 1H NMR spectra of proteins via double quantum filtering, Biochem Biophys Res Commun, vol.117, pp.479-485, 1983.
URL : https://hal.archives-ouvertes.fr/hal-00813137

G. Wagner, Two-dimensional relayed coherence transfer spectroscopy of a protein, J Magn Reson, vol.55, issue.83, pp.90284-90290, 1983.

C. Griesinger, G. Otting, K. Wuethrich, and R. R. Ernst, Clean TOCSY for proton spin system identification in macromolecules, J Am Chem Soc, vol.110, pp.7870-7872, 1988.

W. Willker, U. Flögel, and D. Leibfritz, Ultra-high-resolved HSQC spectra of multiple-13C-labeled biofluids, J Magn Reson, vol.125, pp.216-219, 1997.

. Aimanianda,