A. L. Nelson, E. Dhimolea, and J. M. Reichert, Development trends for human monoclonal antibody therapeutics, Nat Rev Drug Discov, vol.9, pp.767-774, 2010.

L. G. Presta, H. Chen, O. Connor, S. J. Chisholm, V. Meng et al., Humanization of an anti-vascular endothelial growth factor monoclonal antibody for the therapy of solid tumors and other disorders, Cancer Res, vol.57, pp.4593-4599, 1997.

N. Ferrara, K. J. Hillan, H. P. Gerber, and W. Novotny, Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer, Nat Rev Drug Discov, vol.3, pp.391-400, 2004.

C. R. Group, D. F. Martin, M. G. Maguire, G. S. Ying, J. E. Grunwald et al., Ranibizumab and bevacizumab for neovascular age-related macular degeneration, N Engl J Med, vol.364, pp.1897-1908, 2011.

W. C. Liang, X. Wu, F. V. Peale, C. V. Lee, Y. G. Meng et al., Cross-species vascular endothelial growth factor (VEGF)-blocking antibodies completely inhibit the growth of human tumor xenografts and measure the contribution of stromal VEGF, J Biol Chem, vol.281, pp.951-961, 2006.

H. P. Gerber, X. Wu, L. Yu, C. Wiesmann, X. H. Liang et al., Mice expressing a humanized form of VEGF-A may provide insights into the safety and efficacy of anti-VEGF antibodies, Proc Natl Acad Sci, vol.104, pp.3478-3483, 2007.

L. Yu, X. Wu, Z. Cheng, C. V. Lee, J. Lecouter et al., Interaction between bevacizumab and murine VEGF-A: a reassessment, Invest Ophthalmol Vis Sci, vol.49, pp.522-527, 2008.

R. P. Manzano, G. A. Peyman, P. Khan, P. E. Carvounis, M. Kivilcim et al.,

, Br J Ophthalmol, vol.91, pp.804-807, 2007.

O. Dratviman-storobinsky, B. C. Lubin, M. Hasanreisoglu, and N. Goldenberg-cohen, Effect of subconjuctival and intraocular bevacizumab injection on angiogenic gene expression levels in a mouse model of corneal neovascularization, Mol Vis, vol.15, pp.2326-2338, 2009.

M. N. Hashemian, S. Moghimi, S. Kiumehr, M. Riazi, and F. A. Amoli, Prevention and treatment of corneal neovascularization: comparison of different doses of subconjunctival bevacizumab with corticosteroid in experimental rats, Ophthalmic Res, vol.42, pp.90-95, 2009.

I. Avisar, D. Weinberger, and I. Kremer, Effect of subconjunctival and intraocular bevacizumab injections on corneal neovascularization in a mouse model, Curr Eye Res, vol.35, pp.108-115, 2010.

M. H. Dastjerdi, D. R. Saban, A. Okanobo, N. Nallasamy, Z. Sadrai et al., Effects of topical and subconjunctival bevacizumab in high-risk corneal transplant survival, Invest Ophthalmol Vis Sci, vol.51, pp.2411-2417, 2010.

I. Akkoyun, G. Karabay, N. Haberal, A. Dagdeviren, G. Yilmaz et al., Structural consequences after intravitreal bevacizumab injection without increasing apoptotic cell death in a retinopathy of prematurity mouse model

, Acta Ophthalmol, vol.90, pp.564-570, 2012.

R. Rabinowitz, A. Priel, M. Rosner, S. Pri-chen, and A. Spierer, Avastin treatment reduces retinal neovascularization in a mouse model of retinopathy of prematurity, Curr Eye Res, vol.37, pp.624-629, 2012.

J. C. Unkeless and H. N. Eisen, Binding of monomeric immunoglobulins to Fc receptors of mouse macrophages, J Exp Med, vol.142, pp.1520-1533, 1975.

J. V. Ravetch and J. P. Kinet, Fc receptors, Annu Rev Immunol, vol.9, pp.457-492, 1991.
URL : https://hal.archives-ouvertes.fr/hal-01996170

F. Nimmerjahn and J. V. Ravetch, Divergent Immunoglobulin G subclass activity through selective Fc receptor binding, Science, vol.310, pp.1510-1512, 2005.

J. H. Kim, H. W. Seo, H. C. Han, J. H. Lee, S. K. Choi et al., The effect of bevacizumab versus ranibizumab in the treatment of corneal neovascularization: a preliminary study, Korean J Ophthalmol, vol.27, pp.235-242, 2013.

U. Chakravarthy, S. P. Harding, C. A. Rogers, S. M. Downes, A. J. Lotery et al., Alternative treatments to inhibit VEGF in age-related choroidal neovascularisation: 2-year findings of the IVAN randomised controlled trial, Lancet, vol.382, pp.1258-1267, 2013.

P. Carmeliet, Angiogenesis in life, disease and medicine, Nature, vol.438, pp.932-936, 2005.

J. Silver, Drugs for macular degeneration, price discrimination, and Medicare's responsibility not to overpay, JAMA, vol.312, pp.23-24, 2014.

R. J. Albuquerque, T. Hayashi, W. G. Cho, M. E. Kleinman, S. Dridi et al., Alternatively spliced vascular endothelial growth factor receptor-2 is an essential endogenous inhibitor of lymphatic vessel growth, Nat Med, vol.15, pp.1023-1030, 2009.

W. G. Cho, R. J. Albuquerque, M. E. Kleinman, V. Tarallo, A. Greco et al., Small interfering RNA-induced TLR3 activation inhibits blood and lymphatic vessel growth, Proc Natl Acad Sci, vol.106, pp.7137-7142, 2009.

B. J. Fowler, B. D. Gelfand, Y. Kim, N. Kerur, V. Tarallo et al., Nucleoside reverse transcriptase inhibitors possess intrinsic anti-inflammatory activity, Science, vol.346, pp.1000-1003, 2014.

T. Mizutani, B. J. Fowler, Y. Kim, R. Yasuma, L. A. Krueger et al., Nucleoside reverse transcriptase inhibitors suppress laser-induced choroidal neovascularization in mice, Invest Ophthalmol Vis Sci, vol.56, pp.7122-7129, 2015.

Y. Hirano, T. Yasuma, T. Mizutani, B. J. Fowler, V. Tarallo et al., IL-18 is not therapeutic for neovascular age-related macular degeneration, Nat Med, vol.20, pp.1372-1375, 2014.

T. Couffinhal, M. Silver, L. P. Zheng, M. Kearney, B. Witzenbichler et al., Mouse model of angiogenesis, Am J Pathol, vol.152, pp.1667-1679, 1998.

M. E. Kleinman, K. Yamada, A. Takeda, V. Chandrasekaran, M. Nozaki et al., Sequence-and target-independent angiogenesis suppression by siRNA via TLR3, Nature, vol.452, pp.591-597, 2008.

Y. Chen, C. Wiesmann, G. Fuh, B. Li, H. W. Christinger et al., Selection and analysis of an optimized anti-VEGF antibody: crystal structure of an affinitymatured Fab in complex with antigen, J Mol Biol, vol.293, pp.865-881, 1999.

M. Marino, M. Ruvo, D. Falco, S. Fassina, and G. , Prevention of systemic lupus erythematosus in MRL/lpr mice by administration of an immunoglobulin-binding peptide, Nat Biotechnol, vol.18, pp.735-739, 2000.

D. M. Brown, P. K. Kaiser, M. Michels, G. Soubrane, J. S. Heier et al., Ranibizumab versus verteporfin for neovascular age-related macular degeneration, N Engl J Med, vol.355, pp.1432-1444, 2006.

P. J. Rosenfeld, D. M. Brown, J. S. Heier, D. S. Boyer, P. K. Kaiser et al., Ranibizumab for neovascular age-related macular degeneration, N Engl J Med, vol.355, pp.1419-1431, 2006.

J. Kami, K. Muranaka, Y. Yanagi, R. Obata, Y. Tamaki et al., Inhibition of choroidal neovascularization by blocking vascular endothelial growth factor receptor tyrosine kinase, Jpn J Ophthalmol, vol.52, pp.91-98, 2008.

H. Takahashi, Y. Tamaki, N. Ishii, N. Oikawa, E. Mizuguchi et al., Identification of a novel vascular endothelial growth factor receptor 2 inhibitor and its effect for choroidal neovascularization in vivo, Curr Eye Res, vol.33, pp.1002-1010, 2008.

A. Takeda, J. Z. Baffi, M. E. Kleinman, W. G. Cho, M. Nozaki et al., CCR3 is a target for age-related macular degeneration diagnosis and therapy, Nature, vol.460, pp.225-230, 2009.

S. Ueno, M. E. Pease, D. M. Wersinger, T. Masuda, S. A. Vinores et al., Prolonged blockade of VEGF family members does not cause identifiable damage to retinal neurons or vessels, J Cell Physiol, vol.217, pp.13-22, 2008.

M. Nozaki, E. Sakurai, B. J. Raisler, J. Z. Baffi, J. Witta et al., Loss of SPARC-mediated VEGFR-1 suppression after injury reveals a novel antiangiogenic activity of VEGF-A, J Clin Invest, vol.116, pp.422-429, 2006.

M. H. Tao and S. L. Morrison, Studies of aglycosylated chimeric mouse-human IgG. Role of carbohydrate in the structure and effector functions mediated by the human IgG constant region, J Immunol, vol.143, pp.2595-2601, 1989.

M. R. Walker, J. Lund, K. M. Thompson, and R. Jefferis, Aglycosylation of human IgG1 and IgG3 monoclonal antibodies can eliminate recognition by human cells expressing Fc gamma RI and/or Fc gamma RII receptors, Biochem J, vol.259, pp.347-353, 1989.

M. B. Overdijk, S. Verploegen, A. Ortiz-buijsse, T. Vink, J. H. Leusen et al., Crosstalk between human IgG isotypes and murine effector cells, J Immunol, vol.189, pp.3430-3438, 2012.

D. A. Mancardi, B. Iannascoli, S. Hoos, P. England, M. Daeron et al., Fc?RIV is a mouse IgE receptor that resembles macrophage Fc?RI in humans and promotes IgE-induced lung inflammation, J Clin Invest, vol.118, pp.3738-3750, 2008.

Y. S. Lin, C. Nguyen, J. L. Mendoza, E. Escandon, D. Fei et al., Preclinical pharmacokinetics, interspecies scaling, and tissue distribution of a humanized monoclonal antibody against vascular endothelial growth factor, J Pharmacol Exp Ther, vol.288, pp.371-378, 1999.

P. Bruhns, Properties of mouse and human IgG receptors and their contribution to disease models, Blood, vol.119, pp.5640-5649, 2012.

P. Smith, D. J. Dilillo, S. Bournazos, F. Li, and J. V. Ravetch, Mouse model recapitulating human Fc? receptor structural and functional diversity, Proc Natl Acad Sci, vol.109, pp.6181-6186, 2012.

P. Bruhns, B. Iannascoli, P. England, D. A. Mancardi, N. Fernandez et al., Specificity and affinity of human Fc? receptors and their polymorphic variants for human IgG subclasses, Blood, vol.113, pp.3716-3725, 2009.
URL : https://hal.archives-ouvertes.fr/pasteur-00363931

S. Ben-mkaddem, G. Hayem, F. Jonsson, E. Rossato, E. Boedec et al., Shifting Fc?RIIA-ITAM from activation to inhibitory configuration ameliorates arthritis, J Clin Invest, vol.124, pp.3945-3959, 2014.

M. Aloulou, B. Mkaddem, S. Biarnes-pelicot, M. Boussetta, T. Souchet et al., IgG1 and IVIg induce inhibitory ITAM signaling through Fc?RIII controlling inflammatory responses, Blood, vol.119, pp.3084-3096, 2012.

C. E. Van-der-poel, R. A. Karssemeijer, P. Boross, J. A. Van-der-linden, M. Blokland et al., Cytokine-induced immune complex binding to the high-affinity IgG receptor, Fc?RI, in the presence of monomeric IgG, Blood, vol.116, pp.5327-5333, 2010.

C. E. Van-der-poel, R. M. Spaapen, J. G. Van-de-winkel, and J. H. Leusen, Functional characteristics of the high affinity IgG receptor, Fc?RI, J Immunol, vol.186, pp.2699-2704, 2011.

N. Barnes, A. L. Gavin, P. S. Tan, P. Mottram, F. Koentgen et al., Fc?RI-deficient mice show multiple alterations to inflammatory and immune responses, Immunity, vol.16, pp.379-389, 2002.

A. Ioan-facsinay, S. J. De-kimpe, S. M. Hellwig, P. L. Van-lent, F. M. Hofhuis et al., Fc?RI (CD64) contributes substantially to severity of arthritis, hypersensitivity responses, and protection from bacterial infection, Immunity, vol.16, pp.391-402, 2002.

L. Bevaart, M. J. Jansen, M. J. Van-vugt, J. S. Verbeek, J. G. Van-de-winkel et al., The high-affinity IgG receptor, Fc?RI, plays a central role in antibody therapy of experimental melanoma, Cancer Res, vol.66, pp.1261-1264, 2006.

Y. Hamaguchi, Y. Xiu, K. Komura, F. Nimmerjahn, and T. F. Tedder, Antibody isotypespecific engagement of Fc? receptors regulates B lymphocyte depletion during CD20 immunotherapy, J Exp Med, vol.203, pp.743-753, 2006.

R. S. Mcintosh, J. Shi, R. M. Jennings, J. C. Chappel, T. F. De-koning-ward et al., The importance of human Fc?RI in mediating protection to malaria, PLoS Pathog, vol.3, p.72, 2007.

L. Baudino, F. Nimmerjahn, A. Da-silveira, S. Martinez-soria, E. Saito et al., Differential contribution of three activating IgG Fc receptors (Fc?RI, Fc?RIII, and Fc?RIV) to IgG2a-and IgG2b-induced autoimmune hemolytic anemia in mice, J Immunol, vol.180, pp.1948-1953, 2008.

D. A. Mancardi, M. Albanesi, F. Jonsson, B. Iannascoli, N. Van-rooijen et al., The high-affinity human IgG receptor Fc?RI (CD64) promotes IgG-mediated inflammation, anaphylaxis, and antitumor immunotherapy, Blood, vol.121, pp.1563-1573, 2013.

M. Guilliams, P. Bruhns, Y. Saeys, H. Hammad, and B. N. Lambrecht, The function of Fc? receptors in dendritic cells and macrophages, Nat Rev Immunol, vol.14, pp.94-108, 2014.

N. Gul, L. Babes, K. Siegmund, R. Korthouwer, M. Bogels et al., Macrophages eliminate circulating tumor cells after monoclonal antibody therapy, J Clin Invest, vol.124, pp.812-823, 2014.

L. M. Ting, A. C. Kim, A. Cattamanchi, and J. D. Ernst, Mycobacterium tuberculosis inhibits IFN-? transcriptional responses without inhibiting activation of STAT1, J Immunol, vol.163, pp.3898-3906, 1999.

P. Bruhns and F. Jonsson, Mouse and human FcR effector functions, Immunol Rev, vol.268, pp.25-51, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-01281740

E. Jouvin-marche, M. G. Morgado, C. Leguern, D. Voegtle, F. Bonhomme et al., The mouse Igh-1a and Igh-1b H chain constant regions are derived from two distinct isotypic genes, Immunogenetics, vol.29, pp.92-97, 1989.

M. G. Morgado, P. Cam, C. Gris-liebe, P. A. Cazenave, and E. Jouvin-marche, Further evidence that BALB/c and C57BL/6 ?2a genes originate from two distinct isotypes, EMBO J, vol.8, pp.3245-3251, 1989.

E. L. Gautier, T. Shay, J. Miller, M. Greter, C. Jakubzick et al., Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages, Nat Immunol, vol.13, pp.1118-1128, 2012.

E. Sakurai, A. Anand, B. K. Ambati, N. Van-rooijen, and J. Ambati, Macrophage depletion inhibits experimental choroidal neovascularization, Invest Ophthalmol Vis Sci, vol.44, pp.3578-3585, 2003.

K. L. Armour, J. G. Van-de-winkel, L. M. Williamson, and M. R. Clark, Differential binding to human Fc?RIIa and Fc?RIIb receptors by human IgG wildtype and mutant antibodies, Mol Immunol, vol.40, pp.585-593, 2003.

E. E. Idusogie, L. G. Presta, H. Gazzano-santoro, K. Totpal, P. Y. Wong et al., Mapping of the C1q binding site on rituxan, a chimeric antibody with a human IgG1 Fc, J Immunol, vol.164, pp.4178-4184, 2000.

R. L. Shields, A. K. Namenuk, K. Hong, Y. G. Meng, R. J. Briggs et al., High resolution mapping of the binding site on human IgG1 for Fc?RI, Fc?RII, Fc?RIII, and FcRn and design of IgG1 variants with improved binding to the Fc?R, J Biol Chem, vol.276, pp.6591-6604, 2001.

L. Baudino, F. Nimmerjahn, Y. Shinohara, J. Furukawa, F. Petry et al., Impact of a three amino acid deletion in the CH2 domain of murine IgG1 on Fc-associated effector functions, J Immunol, vol.181, pp.4107-4112, 2008.

L. Baudino, Y. Shinohara, F. Nimmerjahn, J. Furukawa, M. Nakata et al., Crucial role of aspartic acid at position 265 in the CH2 domain for murine IgG2a and IgG2b Fc-associated effector functions, J Immunol, vol.181, pp.6664-6669, 2008.

T. A. Wynn, A. Chawla, and J. W. Pollard, Macrophage biology in development, homeostasis and disease, Nature, vol.496, pp.445-455, 2013.

J. V. Ravetch and S. Bolland, IgG Fc receptors, Annu Rev Immunol, vol.19, pp.275-290, 2001.

S. De-haij, J. H. Jansen, P. Boross, F. J. Beurskens, J. E. Bakema et al., In vivo cytotoxicity of type I CD20 antibodies critically depends on Fc receptor ITAM signaling, Cancer Res, vol.70, pp.3209-3217, 2010.

W. T. Kyono, R. De-jong, R. K. Park, Y. Liu, N. Heisterkamp et al., Differential interaction of Crkl with Cbl or C3G, Hef-1, and ? subunit immunoreceptor tyrosine-based activation motif in signaling of myeloid high affinity Fc receptor for IgG (Fc?RI), J Immunol, vol.161, pp.5555-5563, 1998.

R. K. Park, W. T. Kyono, Y. Liu, and D. L. Durden, CBL-GRB2 interaction in myeloid immunoreceptor tyrosine activation motif signaling, J Immunol, vol.160, pp.5018-5027, 1998.

H. Shen, M. Clauss, J. Ryan, A. M. Schmidt, P. Tijburg et al., Characterization of vascular permeability factor/vascular endothelial growth factor receptors on mononuclear phagocytes, Blood, vol.81, pp.2767-2773, 1993.

B. Barleon, S. Sozzani, D. Zhou, H. A. Weich, A. Mantovani et al., Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1, Blood, vol.87, pp.3336-3343, 1996.

M. Clauss, H. Weich, G. Breier, U. Knies, W. Rockl et al., The vascular endothelial growth factor receptor Flt-1 mediates biological activities. Implications for a functional role of placenta growth factor in monocyte activation and chemotaxis, J Biol Chem, vol.271, pp.17629-17634, 1996.

S. Hiratsuka, O. Minowa, J. Kuno, T. Noda, and M. Shibuya, Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice, Proc Natl Acad Sci, vol.95, pp.9349-9354, 1998.

S. Kobayashi, A. Sawano, Y. Nojima, M. Shibuya, and Y. Maru, The c-Cbl/CD2AP complex regulates VEGF-induced endocytosis and degradation of Flt-1 (VEGFR-1), FASEB J, vol.18, pp.929-931, 2004.

C. B. Thien, F. D. Blystad, Y. Zhan, A. M. Lew, V. Voigt et al., Loss of c-Cbl RING finger function results in high-intensity TCR signaling and thymic deletion, EMBO J, vol.24, pp.3807-3819, 2005.

R. A. Clynes, T. L. Towers, L. G. Presta, and J. V. Ravetch, Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets, Nat Med, vol.6, pp.443-446, 2000.

F. Nimmerjahn and J. V. Ravetch, Translating basic mechanisms of IgG effector activity into next generation cancer therapies, Cancer Immun, vol.12, p.13, 2012.

D. Palma, M. Lewis, and C. E. , Macrophage regulation of tumor responses to anticancer therapies, Cancer Cell, vol.23, pp.277-286, 2013.

W. L. Hazenbos, J. E. Gessner, F. M. Hofhuis, H. Kuipers, D. Meyer et al., Impaired IgG-dependent anaphylaxis and Arthus reaction in Fc?RIII (CD16) deficient mice, Immunity, vol.5, pp.181-188, 1996.

F. Nimmerjahn, A. Lux, H. Albert, M. Woigk, C. Lehmann et al., Fc?RIV deletion reveals its central role for IgG2a and IgG2b activity in vivo, Proc Natl Acad Sci, vol.107, pp.19396-19401, 2010.

T. Schneider-merck, L. Van-bueren, J. J. Berger, S. Rossen, K. Van-berkel et al., Human IgG2 antibodies against epidermal growth factor receptor effectively trigger antibody-dependent cellular cytotoxicity but, in contrast to IgG1, only by cells of myeloid lineage, J Immunol, vol.184, pp.512-520, 2010.

A. R. Duncan and G. Winter, The binding site for C1q on IgG, Nature, vol.332, pp.738-740, 1988.

R. Yasuma, V. Cicatiello, and T. Mizutani, Intravenous immune globulin suppresses angiogenesis in mice and humans, Signal Transduct Target Ther, vol.1, 2016.

J. Lu, J. L. Ellsworth, N. Hamacher, S. W. Oak, and P. D. Sun, Crystal structure of Fc? receptor I and its implication in high affinity ?-immunoglobulin binding, J Biol Chem, vol.286, pp.40608-40613, 2011.

H. E. Grossniklaus, K. A. Cingle, Y. D. Yoon, N. Ketkar, L. Hernault et al., Correlation of histologic 2-dimensional reconstruction and confocal scanning laser microscopic imaging of choroidal neovascularization in eyes with agerelated maculopathy, Arch Ophthalmol, vol.118, pp.625-629, 2000.

P. S. Tan, A. L. Gavin, N. Barnes, D. W. Sears, D. Vremec et al., Unique monoclonal antibodies define expression of Fc?RI on macrophages and mast cell lines and demonstrate heterogeneity among subcutaneous and other dendritic cells, J Immunol, vol.170, pp.2549-2556, 2003.

J. D. Mellor, M. P. Brown, H. R. Irving, J. R. Zalcberg, and A. Dobrovic, A critical review of the role of Fc? receptor polymorphisms in the response to monoclonal antibodies in cancer, J Hematol Oncol, vol.6, 2013.

, Signal Transduction and Targeted Therapy website