C. L. Drum, S. Z. Yan, J. Bard, Y. Shen, D. Lu et al., Structural basis for the activation of anthrax adenyl cyclase exotoxin by calmodulin, Nature, vol.415, pp.396-402, 2002.

T. S. Ulmer, S. Soelaiman, S. Li, C. B. Klee, W. J. Tang et al., Calcium dependence of the interaction between calmodulin and anthrax edema factor, J Biol Chem, vol.278, pp.29261-29266, 2003.

E. Laine, J. D. Yoneda, A. Blondel, and T. E. Malliavin, The conformational plasticity of calmodulin upon calcium complexation gives a model of its interaction with the oedema factor of Bacillus anthracis, Proteins, vol.71, pp.1813-1829, 2008.

E. Laine, L. Martínez, A. Blondel, and T. E. Malliavin, Activation of the edema factor of Bacillus anthracis by calmodulin: Evidence of an interplay between the EF-calmodulin interaction and calcium binding, Biophys. J, vol.99, pp.2264-2272, 2010.
URL : https://hal.archives-ouvertes.fr/pasteur-02510853

T. A. Steitz, S. J. Smerdon, J. Jager, and C. M. Joyce, A unified polymerase mechanism for nonhomologous DNA and RNA polymerases, Science, vol.266, pp.2202-2025, 1994.

J. J. Tesmer, R. K. Sunahara, R. A. Johnson, G. Gosselin, A. G. Gilman et al., Twometal-ion catalysis in adenylyl cyclase, Science, vol.285, pp.756-760, 1999.

Y. Shen, Y. S. Lee, S. Soelaiman, P. Bergson, D. Lu et al., Physiological calcium concentrations regulate calmodulin binding and catalysis of adenyl cyclase exotoxins, EMBO J, vol.21, pp.6721-6732, 2002.

J. W. Arndt, X. Zhong-w-gong, A. K. Showalter, J. Liu, C. A. Dunlap et al., Insight into the Catalytic Mechanism of DNA Polymerase ?: Structures of Intermediate Complexes, Biochemistry, vol.40, pp.5368-5375, 2001.

Y. Shen, N. L. Zhukovskaya, Q. Guo, J. Florian, and W. J. Tang, Calcium-independent calmodulin binding and two-metal-ion catalytic mechanism of anthrax edema factor, EMBO J, vol.24, pp.929-941, 2005.

Q. Guo, Y. Shen, N. L. Zhukovskaya, J. Florian, and W. J. Tang, Structural and Kinetic Analyses of the Interaction of Anthrax Adenyl Cyclase Toxin with Reaction Products cAMP and Pyrophosphate, J Biol Chem, vol.279, pp.29427-29435, 2004.

M. Gupta, S. Alam, and R. Bhatnagar, Kinetic characterization and ligand binding studies of His351 mutants of Bacillus anthracis adenylate cyclase, Archiv Biochem Biophys, vol.446, pp.28-34, 2006.

C. A. Brautigam, K. Ascheim, and T. A. Steitz, Structural elucidation of the binding and inhibitory properties of lanthanide (III) ions at the 3'-5' exonucleolytic active site of the Klenow fragment, Chem Biol, vol.6, pp.901-908, 1999.

D. L. Nelson and M. M. Cox, Lehninger Principles of Biochemistry, 2008.

L. Martínez, E. Laine, T. Malliavin, M. Nilges, and A. Blondel, ATP conformations and ion binding modes in the active site of anthrax edema factor: A computational analysis, Proteins, vol.77, pp.971-983, 2009.

A. D. Mackerell, D. Bashford, M. Bellott, R. L. Dunbrack, J. D. Evanseck et al., , p.29

M. , All-atom empirical potential for molecular modeling and dynamics Studies of proteins, J Phys Chem B, vol.102, pp.3586-3616, 1998.

J. J. Pavelites, P. A. Bash, J. Gao, and A. D. Mackerell, A Molecular Mechanics Force Field for NAD+, NADH and the Pyrophosphate Groups of Nucleotides, J Comput Chem, vol.18, pp.221-239, 1997.

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb et al., , 2004.

W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, Comparison of simple potential functions for simulating liquid water, J Chem Phys, vol.79, pp.926-935, 1983.

J. M. Martínez and L. Martínez, Packing optimization for automated generation of complex system's initial configurations for molecular dynamics and docking, J Comput Chem, vol.24, pp.819-825, 2003.

L. Martínez, R. A. Andrade, E. G. Birgin, and J. M. Martínez, Packmol: A package for building initial configurations for molecular dynamics simulations, J Comput Chem, vol.30, pp.2157-2164, 2009.

W. Humphrey, A. Dalke, and K. Schulten, VMD -Visual Molecular Dynamics, J Molec Graphics, vol.14, pp.33-38, 1996.

W. L. Delano, The PyMOL Molecular Graphics System, 2002.

J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid et al., Scalable molecular dynamics with NAMD, J Comput Chem, vol.26, pp.1781-1802, 2005.

H. C. Andersen, RATTLE -A velocity version of the SHAKE algorithm for molecular dynamics calculations, J Comp Phys, vol.52, pp.24-34, 1983.

M. Chirsten and W. F. Van-gunsteren, On searching in, sampling of, and dynamically moving through coformational space of biomolecular sytems: A review, J Comp Chem, vol.29, pp.157-166, 2008.

J. Schlitter, M. Engels, and P. Kruger, Targeted Molecular Dynamics -A new approach for searching pathways of conformational transitions, J Mol Graph, vol.12, pp.84-89, 1994.

R. Elber and M. Karplus, Enhanced sampling in molecular dynamics: Use of the Time-Dependent Hartree approximation for a simulation of carbon monoxide diffusion through myoglobin, J Am Chem Soc, vol.112, pp.9161-9175, 1990.

Q. H. Gibson, R. Regan, R. Elber, J. S. Olson, and T. E. Carver, Distal pocket residues affect picosecond ligand recombination in myoglobin: an experimental and molecular dynamics study of position 29 mutants, J Biol Chem, vol.267, pp.22022-22034, 1992.

E. E. Scott, Q. H. Gibson, and J. S. Olson, Mapping the pathways for O2 entry into and exit from myoglobin, J Biol Chem, vol.267, pp.5177-5188, 2001.

M. Brunori and Q. H. Gibson, Cavities and packing defects in the structural dynamics of myoglobin, EMBO Rep, vol.2, pp.674-679, 2001.

A. Blondel, J. P. Renaud, S. Fischer, D. Moras, and M. Karplus, Retinoic acid receptor: a simulation analysis of retinoic acid binding and the resulting conformational changes, J Mol Biol, vol.291, pp.101-115, 1999.

L. Martínez, M. T. Sonoda, P. Webb, J. D. Baxter, M. S. Skaf et al., Molecular dynamics simulations reveal multiple pathways of ligand dissociation from thyroid hormone receptors, Biophys J, vol.89, pp.2011-2023, 2005.

A. Ulitsky and R. Elber, The thermal equilibrium aspects of the time dependent Hartree and the locally enhanced sampling approximations: formal properties, a correction, and computational examples for rare gas clusters, J Chem Phys, vol.98, pp.3380-3388, 1993.

B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan et al., CHARMM -A program for macromolecular energy, minimization, and dynamics calculations, J Comp Chem, vol.4, pp.187-217, 1983.

R. Lavery, H. Sklenar, K. Zakrzewska, and B. Pullman, The flexibility of the nucleic acids: (II). The calculation of internal energy and applications to mononucleotide repeat DNA, J Biomol Struct Dyn, vol.3, pp.989-1014, 1986.
URL : https://hal.archives-ouvertes.fr/hal-00313463

D. Kosztin, S. Izrailev, and K. Schulten, Unbinding of retinoic acid from its receptor studied by steered molecular dynamics, Biophys J, vol.76, pp.188-197, 1999.

B. Isralewitz, J. Baudry, J. Gullingsrud, D. Kosztin, and K. Schulten, Steered molecular dynamics investigations of protein function, J Mol Graph Model, vol.19, pp.13-25, 2001.

L. Martínez, P. Webb, I. Polikarpov, and M. S. Skaf, Molecular dynamics simulations of ligand dissociation from thyroid hormone receptors: Evidence of the likeliest escape pathway and its implications for the design of novel ligands, J Med Chem, vol.49, pp.23-26, 2006.

C. Castro, E. Smidansky, K. R. Maksimchuk, J. J. Arnold, V. S. Korneeva et al., Two proton transfers in the transition state for nucleotidyl transfer catalyzed by RNA-and DNA-dependent RNA and DNA polymerases, Proc Natl Acad Sci, vol.104, pp.4267-4272, 2007.

J. Liu and M. D. Tsai, DNA Polymerase ?: Pre-Steady-State Kinetic Analyses of dATPS Stereoselectivity and Alteration of the Stereoselectivity by Various Metal Ions and by Site-Directed Mutagenesis, Biochemistry, vol.40, pp.9014-9022, 2001.