Skip to Main content Skip to Navigation
Journal articles

Mechanism of reactant and product dissociation from the anthrax edema factor: A locally enhanced sampling and steered molecular dynamics study

Abstract : The anthrax edema factor is a toxin overproducing damaging levels of cyclic adenosine monophosphate (cAMP) and pyrophosphate (PPi) from ATP. Here, mechanisms of dissociation of ATP and products (cAMP, PPi) from the active site are studied using locally enhanced sampling (LES) and steered molecular dynamics simulations. Various substrate conformations and ionic binding modes found in crystallographic structures are considered. LES simulations show that PPi and cAMP dissociate through different solvent accessible channels, while ATP dissociation requires significant active site exposure to solvent. The ionic content of the active site directly affects the dissociation of ATP and products. Only one ion dissociates along with ATP in the two-Mg(2+) binding site, suggesting that the other ion binds EF prior to ATP association. Dissociation of reaction products cAMP and PPi is impaired by direct electrostatic interactions between products and Mg(2+) ions. This provides an explanation for the inhibitory effect of high Mg(2+) concentrations on EF enzymatic activity. Breaking of electrostatic interactions is dependent on a competitive binding of water molecules to the ions, and thus on the solvent accessibility of the active site. Consequently, product dissociation seems to be a two-step process. First, ligands are progressively solvated while preserving the most important electrostatic interactions, in a process that is dependent on the flexibility of the active site. Second, breakage of the electrostatic bonds follows, and ligands diffuse into solvent. In agreement with this mechanism, product protonation facilitates dissociation.
Document type :
Journal articles
Complete list of metadatas

Cited literature [41 references]  Display  Hide  Download

https://hal-pasteur.archives-ouvertes.fr/pasteur-02510854
Contributor : Claire Dugast <>
Submitted on : Tuesday, April 7, 2020 - 3:46:47 PM
Last modification on : Wednesday, April 8, 2020 - 9:06:19 AM

File

mechanisme of reactant and pro...
Files produced by the author(s)

Identifiers

Collections

Citation

Leandro Martínez, Thérèse Malliavin, Arnaud Blondel. Mechanism of reactant and product dissociation from the anthrax edema factor: A locally enhanced sampling and steered molecular dynamics study. Proteins - Structure, Function and Bioinformatics, Wiley, 2011, 79 (5), pp.1649-1661. ⟨10.1002/prot.22991⟩. ⟨pasteur-02510854⟩

Share

Metrics

Record views

355

Files downloads

235