S. Adhya, Multipartite genetic control elements: communication by DNA loop, Annu Rev, vol.17, 1989.

, Genet, vol.23, pp.227-50

G. I. Aleshkin, K. V. Kadzhaev, and A. P. Markov, High and low UV-dose responses in 19, 1998.

, SOS-induction of the precise excision of transposons tn1, Tn5 and Tn10 in Escherichia coli, Mutat 20 Res, vol.401, pp.179-91

N. J. Althorpe, P. M. Chilley, A. T. Thomas, W. J. Brammar, and B. M. Wilkins, , vol.22, p.87, 1999.

H. Kurahashi, H. Inagaki, T. Ohye, H. Kogo, T. Kato et al., , 2006.

, Chromosomal translocations mediated by palindromic DNA, Cell Cycle, vol.5, pp.1297-303

P. F. Lambert, D. A. Waring, R. D. Wells, and W. S. Reznikoff, DNA requirements at 4 the bacteriophage G4 origin of complementary-strand DNA synthesis, J. Virol, vol.58, p.89, 1986.

B. C. Lampson, M. Inouye, and S. Inouye, Retrons, msDNA, and the bacterial 6 genome, Cytogenetic and genome research, vol.110, p.491, 2005.

L. D. Langston and M. O'donnell, DNA replication: keep moving and don't mind the 8 gap, Mol Cell, vol.23, pp.155-60, 2006.

D. R. Leach, Long DNA palindromes, cruciform structures, genetic instability and 10 secondary structure repair, Bioessays, vol.16, pp.893-900, 1994.

D. M. Lilley, The kinetic properties of cruciform extrusion are determined by DNA base-12 sequence, Nucleic Acids Res, vol.13, pp.1443-65, 1985.

L. F. Liu and J. C. Wang, Supercoiling of the DNA template during transcription, Proc, vol.14, 1987.

, Natl Acad Sci U S A, vol.84, pp.7024-7031

Y. Liu, V. Bondarenko, A. Ninfa, and V. M. Studitsky, DNA supercoiling allows 16 enhancer action over a large distance, Proc Natl Acad Sci U S A, vol.98, p.95, 2001.

M. Llosa, S. Bolland, F. De-la, and C. , Structural and functional analysis of the origin 18 of conjugal transfer of the broad-host-range IncW plasmid R388 and comparison with the related 19, 1991.

, IncN plasmid R46, Mol Gen Genet, vol.226, pp.473-83

K. B. Low, Escherichia coli K-12 F-prime factors, old and new, Bacteriological reviews, vol.21, p.587, 1972.

P. Noirot, J. Bargonetti, and R. P. Novick, Initiation of rolling-circle replication in 2 pT181 plasmid: initiator protein enhances cruciform extrusion at the origin, Proceedings of the 3 National Academy of Sciences of the United States of America, vol.87, p.8560, 1990.

P. Noirot, J. Bargonetti, and R. P. Novick, Initiation of rolling-circle replication in 5 pT181 plasmid: initiator protein enhances cruciform extrusion at the origin, Proc Natl Acad Sci, 1990.

, S A, vol.87, pp.8560-8564

N. Nomura, H. Masai, M. Inuzuka, C. Miyazaki, E. Ohtsubo et al.,

R. Matsui, K. Ishizaki, and . Arai, Identification of eleven single-strand initiation 9 sequences (ssi) for priming of DNA replication in the F, R6K, R100 and ColE2 plasmids, Gene, vol.10, p.15, 1991.

E. A. Oussatcheva, J. Pavlicek, O. F. Sankey, R. R. Sinden, Y. L. Lyubchenko et al.,

. Potaman, Influence of global DNA topology on cruciform formation in supercoiled DNA, J, vol.13, 2004.

, Mol Biol, vol.338, pp.735-778

V. Pages and R. P. Fuchs, Uncoupling of leading-and lagging-strand DNA replication 15 during lesion bypass in vivo, Science, vol.300, pp.1300-1303, 2003.

N. Panayotatos and R. D. Wells, Cruciform structures in supercoiled DNA, Nature, vol.17, pp.466-70, 1981.

C. E. Pearson, H. Zorbas, G. B. Price, and M. Zannis-hadjopoulos, , p.19, 1996.

, stem-loops, and cruciforms: significance for initiation of DNA replication, J Cell Biochem, vol.63, pp.1-20

J. R. Platt, POSSIBLE SEPARATION OF INTERTWINED NUCLEIC ACID CHAINS BY 22 TRANSFER-TWIST, Proceedings of the National Academy of Sciences of the United States of 23, 1955.

, America, vol.41, p.181

G. J. Pruss and K. Drlica, DNA supercoiling and prokaryotic transcription, Cell, vol.56, pp.521-546, 1989.

G. D. Recchia and R. M. Hall, Gene cassettes: a new class of mobile element, 27 Microbiology, vol.141, pp.3015-3027, 1995.

M. S. Reddy, M. B. Vaze, K. Madhusudan, and K. Muniyappa, Binding of SSB, p.29, 2000.

E. L. Tatum and J. Lederberg, Gene Recombination in the Bacterium Escherichia coli, Journal of bacteriology, vol.53, issue.11, p.673, 1947.

T. Q. Trinh and R. R. Sinden, Preferential DNA secondary structure mutagenesis in the 13 lagging strand of replication in E. coli, Nature, vol.352, pp.544-551, 1991.

M. Val, M. Bouvier, J. Campos, D. Sherratt, F. O. Cornet et al., The single-stranded genome of phage CTX is the form used for integration into the 16 genome of Vibrio cholerae, Molecular cell, vol.15, p.559, 2005.

M. E. Val, M. Bouvier, J. Campos, D. Sherratt, F. Cornet et al., , 2005.

, The single-stranded genome of phage CTX is the form used for integration into the genome of 19

, Vibrio cholerae. Mol Cell, vol.19, pp.559-66

, The SOS Response of Escherichia coli. Escherichia coli and Salmonella, 1996.

F. C. Neidhardt and . Washington, DC American Society of Microbiology, vol.1, pp.1400-1416

R. A. Wozniak, D. E. Fouts, M. Spagnoletti, M. M. Colombo, D. Ceccarelli et al.,