N. C. Stenseth, B. B. Atshabar, M. Begon, S. R. Belmain, E. Bertherat et al., Plague: past, present, and future, PLoS Med, vol.5, p.3, 2008.

R. D. Perry and J. D. Fetherston, Yersinia pestiseetiologic agent of plague, Clin Microbiol Rev, vol.10, pp.35-66, 1997.

A. Yersin, La peste bubonique a Hong-Kong, Ann Inst Pasteur (Paris), vol.8, pp.662-669
URL : https://hal.archives-ouvertes.fr/pasteur-00442093

A. J. Vogler, F. Chan, R. Nottingham, G. Andersen, K. Drees et al., A decade of plague in Mahajanga, Madagascar: insights into the global maritime spread of pandemic plague

E. Bertherat, Plague around the world, Wkly Epidemiol Rec, vol.91, pp.89-104, 2016.

L. B. Respicio-kingry, B. M. Yockey, S. Acayo, J. Kaggwa, T. Apangu et al., Two distinct Yersinia pestis populations causing plague among humans in the west nile region of Uganda, PLoS Neglected Trop Dis, vol.10, p.4360, 2016.

L. Shi, G. Yang, Z. Zhang, L. Xia, Y. Liang et al., Reemergence of human plague in Yunnan, PLoS One, vol.13, p.198067, 2016.

A. A. Abedi, J. Shako, J. Gaudart, B. Sudre, B. K. Ilunga et al., Ecologic features of plague outbreak areas, democratic republic of the Congo, Emerg Infect Dis, vol.24, pp.210-230, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01717663

V. Andrianaivoarimanana, P. Piola, D. M. Wagner, F. Rakotomanana, V. Maheriniaina et al., Trends of human plague, Emerg Infect Dis, vol.25, pp.220-228, 2019.

R. Randremanana, V. Andrianaivoarimanana, B. Nikolai, B. Ramasindrazana, J. Paireau et al., Epidemiological characteristics of urban plague epidemic in Madagascar, AugusteNovember 2017: an outbreak report, vol.19, pp.537-582, 2019.

A. Mcnally, N. R. Thomson, S. Reuter, and B. W. Wren, Add, stir and reduce': Yersinia spp. as model bacteria for pathogen evolution, Nat Rev Microbiol, vol.14, pp.177-90, 2016.

B. J. Hinnebusch, C. O. Jarrett, and D. M. Bland, Fleaing' the plague: adaptations of Yersinia pestisto its insect vector that lead to transmission, Annu Rev Microbiol, vol.71, pp.215-247, 2017.

A. A. Valtueña, A. Mittnik, F. M. Key, W. Haak, R. Allm?-ae et al., The stone age plague and its persistence in Eurasia, Curr Biol, vol.27, pp.3683-91, 2017.

N. Rascovan, K. Sj?-ogren-k-g,-kristiansen, R. Nielsen, E. Willerslev, and C. Desnues, Emergence and spread of basal lineages of Yersinia pestis during the neolithic decline, Cell, pp.295-305, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01995290

S. Rasmussen, M. E. Allentoft, K. Nielsen, L. Orlando, M. Sikora et al., Early divergent strains of Yersinia pestis in Eurasia 5,000 Years ago, Cell, vol.163, pp.571-82, 2015.

M. A. Spyrou, R. I. Tukhbatova, C. Wang, A. A. Valtueña, A. K. Lankapalli et al., Analysis of 3800-year-old Yersinia pestis genomes suggests Bronze age origin for bubonic plague, Nat Commun, pp.1-10, 2018.

Y. Sun, J. Co, C. F. Bosio, and B. J. Hinnebusch, Retracing the evolutionary path that ledto flea-borne transmission of Yersinia pestis, Cell Host Microbe, vol.15, pp.578-86, 2014.

Y. Cui, C. Yu, Y. Yan, D. Li, Y. Li et al., Historical variations in mutation rate in an epidemic pathogen, Yersinia pestis, Proc Natl Acad Sci, vol.110, pp.577-82, 2013.

I. Chouikha and B. J. Hinnebusch, Silencing urease: a key evolutionary step that facilitated the adaptation of Yersinia pestisto the flea-borne transmission route, Proc Natl Acad Sci, vol.111, pp.18709-18723, 2014.

D. L. Zimbler, J. A. Schroeder, J. L. Eddy, and W. W. Lathem, Early emergence of Yersinia pestis as a severe respiratory pathogen, Nat Commun, vol.6, pp.1-10, 2015.

M. Harbeck, L. Seifert, S. H?-ansch, D. M. Wagner, D. Birdsell et al., Yersinia pestis DNA from skeletal remains from the 6th century AD reveals insights into justinianic plague, PLoS Pathog, vol.9, p.1003349, 2013.

D. M. Wagner, J. Klunk, M. Harbeck, A. Devault, N. Waglechner et al., Yersinia pestis and the plague of Justinian 541-543 AD: a genomic analysis, Lancet Infect Dis, vol.14, pp.319-345, 2014.

K. I. Bos, V. J. Schuenemann, G. B. Golding, H. A. Burbano, N. Waglechner et al., A draft genome of Yersinia pestis from victims of the Black Death, Nature, pp.1-6, 2011.

S. Haensch, R. Bianucci, M. Signoli, M. Rajerison, M. Schultz et al., Distinct clones of Yersinia pestis caused the Black Death, PLoS Pathog, vol.6, p.1001134, 2010.
URL : https://hal.archives-ouvertes.fr/pasteur-00835725

V. V. Kutyrev, G. A. Eroshenko, V. L. Motin, N. Y. Nosov, J. M. Krasnov et al., Phylogeny and classification of Yersinia pestis through the lens of strains from the plague foci of commonwealth of independent states, Front Microbiol, vol.9, p.14043, 2018.

A. Namouchi, M. Guellil, O. Kersten, S. H?-ansch, C. Ottoni et al., Integrative approach using Yersinia pestis genomes to revisit the historical landscape of plague during the medieval period, Proc Natl Acad Sci, vol.918, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02118066

B. V. Schmid, U. Büntgen, W. R. Easterday, C. Ginzler, L. Walløe et al., Climate-driven introduction of the Black Death and successive plague reintroductions into Europe, Proc Natl Acad Sci, vol.112, pp.3020-3025, 2015.

R. Yue, H. F. Lee, and C. Wu, Trade routes and plague transmission in preindustrial, Europe. Sci Rep, pp.1-10, 2017.

K. I. Bos, A. Herbig, J. Sahl, N. Waglechner, M. Fourment et al., Eighteenth century Yersinia pestis genomes reveal the long-term persistence of an historical plague focus, eLife, vol.5, p.12994, 2016.

M. A. Spyrou, R. I. Tukhbatova, M. Feldman, J. Drath, S. Kacki et al., Historical Y. pestis genomes reveal the European Black death as the source of ancient and modern plague pandemics, Cell Host Microbe, vol.19, pp.874-81, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01842544

L. Seifert, I. Wiechmann, M. Harbeck, A. Thomas, G. Grupe et al., Genotyping Yersinia pestis in historical plague: evidence for long-term persistence of Y. pestis in Europe from the 14th to the 17th century, PLoS One, vol.11, p.145194, 2016.

K. R. Dean, F. Krauer, L. Walløe, O. C. Lingjaerde, B. Bramanti et al., Human ectoparasites and the spread of plague in Europe during the second pandemic, Proc Natl Acad Sci, vol.115, pp.1304-1313, 2018.

G. Morelli, Y. Song, C. J. Mazzoni, M. Eppinger, P. Roumagnac et al., Yersinia pestis, Nat Genet, vol.42, pp.1140-1143, 2010.
URL : https://hal.archives-ouvertes.fr/pasteur-00836130

J. M. Riehm, M. Projahn, A. J. Vogler, M. Rajerison, G. Andersen et al., Diverse genotypes of Yersinia pestis caused plague in Madagascar in 2007, PLoS Neglected Trop Dis, vol.9, p.3844, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01300547

A. J. Vogler, V. Andrianaivoarimanana, S. Telfer, C. M. Hall, J. W. Sahl et al., Temporal phylogeography of Yersinia pestis in Madagascar: insights into the long-term maintenance of plague, PLoS Neglected Trop Dis, vol.11, p.5887, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-01635032

S. Atkinson and P. Williams, Yersinia virulence factors -a sophisticated arsenal for combating host defences, vol.5, pp.1370-410, 2016.

G. R. Cornelis, The Yersinia YsceYop 'type III' weaponry, Nat Rev Mol Cell Biol, vol.3, pp.742-54, 2002.

J. E. Trosky, A. Liverman, and K. Orth, Yersinia outer proteins: Yops, Cell Microbiol, vol.10, pp.557-65, 2008.

C. Persson, N. Carballeira, H. Wolf-watz, and M. Fallman, The PTPase YopH inhibits uptake of Yersinia, tyrosine phosphorylation of p130Cas and FAK, and the associated accumulation of these proteins in peripheral focal adhesions, EMBO J, vol.16, pp.2307-2325, 1997.

A. G. Evdokimov, J. E. Tropea, K. M. Routzahn, and D. S. Waugh, Crystal structure of the Yersinia pestis GTPase activator YopE, Protein Sci, vol.11, pp.401-409, 2009.

F. Shao, P. M. Merritt, Z. Bao, R. W. Innes, and J. E. Dixon, A Yersinia effector and a Pseudomonas avirulence protein define a family of cysteine proteases functioning in bacterial pathogenesis, Cell, vol.109, pp.575-88, 2002.

K. Orth, Z. Xu, M. B. Mudgett, Z. Q. Bao, L. E. Palmer et al., Disruption of signaling by Yersinia effector YopJ, a ubiquitin-like protein protease, Science, vol.290, pp.1594-1601, 2000.

S. Mukherjee, G. Keitany, Y. Li, Y. Wang, H. L. Ball et al., Yersinia YopJ acetylates and inhibits kinase activation by blocking phosphorylation, Science, vol.312, pp.1211-1215, 2006.

G. Prehna, M. I. Ivanov, J. B. Bliska, and C. E. Stebbins, Yersinia virulence depends on mimicry of host rho-family nucleotide dissociation inhibitors, Cell, vol.126, pp.869-80, 2006.

C. N. Larock and B. T. Cookson, The Yersinia virulence effector YopM brinds caspase-1 to arrest inflammasome assembly and processing, Cell Host Microbe, vol.12, pp.799-805, 2012.

C. Wei, Y. Wang, Z. Du, K. Guan, Y. Cao et al., The Yersinia Type III secretion effector YopM Is an E3 ubiquitin ligase that induced necrotic cell death by targeting NLRP3, pp.1-12, 2019.

R. Dewoody, P. M. Merritt, A. S. Houppert, and M. M. Marketon, YopK regulates the Yersinia pestis type III secretion system from within host cells, Mol Microbiol, vol.79, pp.1445-61, 2011.

I. E. Brodsky, N. W. Palm, S. Sadanand, M. B. Ryndak, F. S. Sutterwala et al., A Yersinia effector protein promotes virulence by preventing inflammasome recognition of the type III secretion system, Cell Host Microbe, vol.7, pp.376-87, 2010.

J. J. Thomson, S. C. Plecha, and E. S. Krukonis, Ail provides multiple mechanisms of serum resistance to Yersinia pestis, Mol Microbiol, vol.111, pp.82-95, 2019.

R. Bao, M. Nair, W. Tang, L. Esser, A. Sadhukhan et al., Structural basis for the specific recognition of dual receptors by the homopolymeric pH 6 antigen (Psa) fimbriae of Yersinia pestis, Proc Natl Acad Sci, vol.110, pp.1065-70, 2013.

F. Liu, H. Chen, E. M. Galvan, M. A. Lasaro, and D. M. Schifferli, Effects of Psa and F1 on the adhesive and invasive interactions of Yersinia pestis with human respiratory tract epithelial cells, Infect Immun, vol.74, pp.5636-5680, 2006.

J. Sha, S. L. Agar, W. B. Baze, J. P. Olano, A. A. Fadl et al., Braun lipoprotein (Lpp) contributes to virulence of Yersiniae: potential role of Lpp in inducing bubonic and pneumonic plague, Infect Immun, vol.76, pp.1390-409, 2008.

J. Sha, M. L. Kirtley, C. J. Van-lier, S. Wang, T. E. Erova et al., Deletion of the Braun lipoprotein-encoding gene and altering the function of lipopolysaccharide attenuate the plague bacterium, Infect Immun, vol.81, pp.815-843, 2013.

S. W. Montminy, N. Khan, S. Mcgrath, M. J. Walkowicz, F. Sharp et al., Virulence factors of Yersinia pestis are overcome by a strong lipopolysaccharide response, Nat Immunol, vol.7, pp.1066-73, 2006.

W. W. Lathem, P. A. Price, V. L. Miller, and W. E. Goldman, A plasminogen-activating protease specifically controls the development of primary pneumonic plague, Science, vol.315, pp.509-522, 2007.

D. L. Zimbler, J. L. Eddy, J. A. Schroeder, and W. W. Lathem, Inactivation of peroxiredoxin 6 by the pla protease of Yersinia pestis, Infect Immun, vol.84, pp.365-74, 2015.

J. L. Eddy, L. M. Gielda, A. J. Caulfield, S. M. Rangel, and W. W. Lathem, Production of outer membrane vesicles by the plague pathogen Yersinia pestis, PLoS One, vol.9, p.107002, 2014.

E. Pradel, N. Lemaître, M. Merchez, R. I. Reboul, A. Dewitte et al., New insights into how Yersinia pestis adapts to its mammalian host during bubonic plague, PLoS Pathog, vol.10, p.1004029, 2014.

S. G. Palace, M. K. Proulx, S. Lu, R. E. Baker, and J. D. Goguen, Genome-wide mutant fitness profiling identifies nutritional requirements for optimal growth of Yersinia pestis in deep tissue, mBio, vol.5, 2014.

D. Ponnusamy, E. C. Fitts, J. Sha, T. E. Erova, E. V. Kozlova et al., Highthroughput, signature-tagged mutagenic approach to identify novel virulence factors of Yersinia pestis CO92 in a mouse model of infection, Infect Immun, vol.83, pp.2065-81, 2015.

J. A. Andersson, J. Sha, T. E. Erova, E. C. Fitts, D. Ponnusamy et al., Identification of new virulence factors and vaccine candidates for Yersinia pestis, Front Cell Infect Microbiol, vol.7, p.3717, 2017.

M. I. Hood and E. P. Skaar, Nutritional immunity: transition metals at the pathogenehost interface, Nat Rev Microbiol, vol.10, pp.525-562, 2012.

A. Zauberman, Y. Vagima, A. Tidhar, M. Aftalion, D. Gur et al., Host iron nutritional immunity induced by a live Yersinia pestis vaccine strain is associated with immediate protection against plague, Front Cell Infect Microbiol, vol.7, p.183, 2017.

J. D. Fetherston, O. Kirillina, A. G. Bobrov, J. T. Paulley, and R. D. Perry, The yersiniabactin transport system is critical for the pathogenesis of bubonic and pneumonic plague, Infect Immun, vol.78, pp.2045-52, 2010.

J. D. Fetherston, I. Mier, H. Truszczynska, and R. D. Perry, The Yfe and Feo transporters are involved in microaerobic growth and virulence of Yersinia pestis in bubonic plague, Infect Immun, vol.80, pp.3880-91, 2012.

A. G. Bobrov, O. Kirillina, J. D. Fetherston, M. C. Miller, J. A. Burlison et al., The Yersinia pestis siderophore, yersiniabactin, and the ZnuABC system both contribute to zinc acquisition and the development of lethal septicaemic plague in mice, Mol Microbiol, vol.93, pp.759-75, 2014.

R. D. Pechous, C. A. Broberg, N. M. Stasulli, V. L. Miller, and W. E. Goldman, In Vivo transcriptional profiling of Yersinia pestis reveals a novel bacterial mediator of pulmonary inflammation, mBio, vol.6, pp.2302-2316, 2015.

A. G. Bobrov, O. Kirillina, M. Y. Fosso, J. D. Fetherston, M. C. Miller et al., Zinc transporters YbtX and ZnuABC are required for the virulence of Yersinia pestis in bubonic and pneumonic plague in mice, Metallomics, vol.9, pp.757-72, 2017.

J. G. Shannon, A. M. Hasenkrug, D. W. Dorward, V. Nair, A. B. Carmody et al., Yersinia pestis subverts the dermal neutrophil response in a mouse model of bubonic plague

J. L. Spinner, S. Winfree, T. Starr, J. G. Shannon, V. Nair et al., Yersinia pestis survival and replication within human neutrophil phagosomes and uptake of infected neutrophils by macrophages, J Leukoc Biol, vol.95, pp.389-98, 2014.

C. Pujol, K. A. Klein, G. A. Romanov, L. E. Palmer, C. Cirota et al., Yersinia pestis can reside in autophagosomes and avoid xenophagy in murine macrophages by preventing vacuole acidification, Infect Immun, vol.77, pp.2251-61, 2009.

M. G. Connor, A. R. Pulsifer, C. T. Price, A. Kwaik, Y. Lawrenz et al., Yersinia pestis requires host Rab1b for survival in macrophages, PLoS Pathog, vol.11, p.1005241, 2015.

M. G. Connor, A. R. Pulsifer, D. Chung, E. C. Rouchka, B. K. Ceresa et al., Yersinia pestis targets the host endosome recycling pathway during the biogenesis of the Yersinia-containing vacuole to avoid killing by macrophages, mBio, vol.9, pp.1800-1817, 2018.

P. M. Merritt, T. Nero, L. Bohman, S. Felek, E. S. Krukonis et al., Yersinia pestis targets neutrophils via complement receptor 3, Cell Microbiol, vol.17, pp.666-87, 2014.

A. Derbise, F. Pierre, M. Merchez, E. Pradel, S. Laouami et al., Inheritance of the lysozyme inhibitor Ivy was an important evolutionary step by Yersinia pestis to avoid the host innate immune response, J Infect Dis, vol.207, pp.1535-1578, 2013.

A. Reboul, N. Lemaître, M. Titecat, M. Merchez, G. Deloison et al., Yersinia pestis requires the 2-component regulatory system OmpR-EnvZ to resist innate immunity during the early and late stages of plague, J Infect Dis, vol.210, pp.1367-75, 2014.

J. G. Shannon, C. F. Bosio, and B. J. Hinnebusch, Dermal neutrophil, macrophage and dendritic cell responses to Yersinia pestis transmitted by fleas, PLoS Pathog, vol.11, p.1004734, 2015.

R. J. Gonzalez, M. C. Lane, N. J. Wagner, E. H. Weening, and V. L. Miller, Dissemination of a highly virulent pathogen: tracking the early events that define infection, PLoS Pathog, vol.11, p.1004587, 2015.

R. J. Gonzalez and V. L. Miller, A deadly path: bacterial spread during bubonic plague, Trends Microbiol, pp.1-3, 2016.

. St, A. L. John, W. Ang, M. Huang, C. A. Kunder et al., S1P-Dependent trafficking of intracellular Yersinia pestis through lymph nodes establishes buboes and systemic infection, Immunity, vol.41, pp.440-50, 2014.

L. K. Chung and J. B. Bliska, Yersinia versus host immunity: how a pathogen evades or triggers a protective response, Curr Opin Microbiol, vol.29, pp.56-62, 2016.

D. M. Monack, J. Mecsas, N. Ghori, and S. Falkow, Yersinia signals macrophages to undergo apoptosis and YopJ is necessary for this cell death, Proc Natl Acad Sci, vol.94, pp.10385-90, 1997.

D. M. Monack, J. Mecsas, D. Bouley, and S. Falkow, Yersinia-induced apoptosis in vivo aids in the establishment of a systemic infection of mice, J Exp Med, vol.188, pp.2127-2164, 1998.

N. Lemaître, F. Sebbane, D. Long, J. Hinnebusch, and B. , Yersinia pestis YopJ suppresses tumor necrosis factor Alpha induction and contributes to apoptosis of immune cells in the lymph node but is not required for virulence in a rat model of bubonic plague, Infect Immun, vol.74, pp.5126-5157, 2006.

M. Arifuzzaman, W. Ang, H. W. Choi, M. L. Nilles, A. L. St-john et al., Necroptosis of infiltrated macrophages drives Yersinia pestis dispersal within buboes, JCI Insight, vol.3, p.35, 2018.

T. Bergsbaken and B. T. Cookson, Macrophage activation redirects Yersinia-infected host cell death from apoptosis to caspase-1-dependent pyroptosis, PLoS Pathog, vol.3, p.161, 2007.

P. Orning, D. Weng, K. Starheim, D. Ratner, Z. Best et al., Pathogen blockade of TAK1 triggers caspase-8edependent cleavage of gasdermin D and cell death, Science, vol.362, pp.1064-1073, 2018.

D. Weng, R. Marty-roix, S. Ganesan, M. K. Proulx, G. I. Vladimer et al., Caspase-8 and RIP kinases regulate bacteria-induced innate immune responses and cell death, Proc Natl Acad Sci, vol.111, pp.7391-7397, 2014.

M. A. O'donnell, E. Perez-jimenez, A. Oberst, A. Ng, R. Massoumi et al., Caspase 8 inhibits programmed necrosis by processing CYLD, Nat Cell Biol, vol.13, pp.1437-1479, 2011.

N. H. Philip, A. Delaney, L. W. Peterson, M. Santos-marrero, J. T. Grier et al., Activity of uncleaved caspase-8 controls anti-bacterial immune defense and TLR-induced cytokine production independent of cell death, PLoS Pathog, vol.12, p.1005910, 2016.

P. A. Price, J. Jin, and W. E. Goldman, Pulmonary infection by Yersinia pestis rapidly establishes a permissive environment for microbial proliferation, Proc Natl Acad Sci, vol.109, pp.3083-3091, 2012.

R. D. Pechous, V. Sivaraman, P. A. Price, N. M. Stasulli, and W. E. Goldman, Early host cell targets of Yersinia pestis during primary pneumonic plague, PLoS Pathog, vol.9, p.1003679, 2013.

V. Sivaraman, R. D. Pechous, N. M. Stasulli, K. R. Eichelberger, E. A. Miao et al., Yersinia pestis activates both IL-1b and IL-1 receptor antagonist to modulate lung inflammation during pneumonic plague, PLoS Pathog, vol.11, p.1004688, 2015.

K. N. Peters, M. O. Dhariwala, H. Hanks, J. M. Brown, C. R. Anderson et al., Early apoptosis of macrophages modulated by injection of Yersinia pestis YopK promotes progression of primary pneumonic plague, PLoS Pathog, vol.9, p.1003324, 2013.

R. D. Pechous, V. Sivaraman, N. M. Stasulli, and W. E. Goldman, Pneumonic plague: the darker side of Yersinia pestis, Trends Microbiol, vol.24, pp.190-197, 2016.

N. M. Stasulli, K. R. Eichelberger, P. A. Price, R. D. Pechous, S. A. Montgomery et al., Spatially distinct neutrophil responses within the inflammatory lesions of pneumonic plague, mBio, vol.6, 2015.

Y. Vagima, A. Zauberman, Y. Levy, D. Gur, A. Tidhar et al., Circumventing Y. pestis virulence by early recruitment of neutrophils to the lungs during pneumonic plague, PLoS Pathog, vol.11, p.1004893, 2015.

E. Pachulec, A. Bagga, R. B. Chevallier, L. , O. Donnell et al., Enhanced macrophage M1 polarization and resistance to apoptosis enable resistance to plague, JID (J Infect Dis), vol.216, pp.761-70, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-02066154

D. R. Littman and A. Y. Rudensky, Th17 and regulatory T cells in mediating and restraining inflammation, Cell, vol.140, pp.845-58, 2010.

Y. Bi, J. Zhou, H. Yang, X. Wang, X. Zhang et al., IL-17A produced by neutrophils protects against pneumonic plague through orchestrating IFN--activated macrophage programming, J Immunol, vol.192, pp.704-717, 2014.

J. S. Lin, L. W. Kummer, F. M. Szaba, and S. T. Smiley, IL-17 contributes to cell-mediated defense against pulmonary Yersinia pestis infection, J Immunol, vol.186, 2011.

M. Pasztoi, A. Bonifacius, J. Pezoldt, D. Kulkarni, J. Niemz et al., Yersinia pseudotuberculosis supports Th17 differentiation and limits de novo regulatory T cell induction by directly interfering with T cell receptor signaling, Cell Mol Life Sci, vol.74, pp.2839-50, 2017.

V. A. Feodorova, A. M. Lyapina, M. A. Khizhnyakova, S. S. Zaitsev, L. V. Sayapina et al., Humoral and cellular immune responses to Yersinia pestis Pla antigen in humans immunized with live plague vaccine, PLoS Neglected Trop Dis, vol.12, p.6511, 2018.

A. Derbise, Y. Hanada, . Khalif-e-m, E. Carniel, and C. E. Demeure, Complete protection against pneumonic and bubonic plague after a single oral vaccination, PLoS Neglected Trop Dis, vol.9, p.4162, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-02067827

M. J. Chiuchiolo, J. L. Boyer, A. Krause, S. Senina, N. R. Hackett et al., Protective immunity against respiratory tract challenge with Yersinia pestis in mice immunized with an adenovirus-based vaccine vector expressing V antigen, J Infect Dis, vol.194, pp.1249-57, 2006.

D. G. Heath, G. W. Anderson, J. M. Mauro, S. L. Welkos, G. P. Andrews et al., Protection against experimental bubonic and pneumonic plague by a recombinant capsular F1-V antigen fusion protein vaccine, Vaccine, vol.16, pp.1131-1138, 1998.

J. E. Osorio, T. D. Powell, R. S. Frank, K. Moss, E. J. Haanes et al., Recombinant raccoon pox vaccine protects mice against lethal plague, Vaccine, vol.21, pp.1232-1240, 2003.

E. D. Williamson, S. M. Eley, K. F. Griffin, M. Green, P. Russell et al., A new improved sub-unit vaccine for plague: the basis of protection, FEMS Immunol Med Microbiol, vol.12, pp.223-253, 1995.

S. T. Smiley, Current challenges in the development of vaccines for pneumonic plague, Expert Rev Vaccines, vol.7, pp.209-230, 2008.

, Efficacy trials of plague vaccines: endpoints, trial design, pp.1-13, 2018.

, FDA. Code of federal regulations, 2011.

C. A. Cornelius, L. E. Quenee, K. A. Overheim, F. Koster, T. L. Brasel et al., Immunization with recombinant V10 protects Cynomolgus macaques from lethal pneumonic plague, Infect Immun, vol.76, pp.5588-97, 2008.

M. Simonet, P. Berche, D. Mazigh, and M. Veron, Protection against Yersinia infection induced by non-virulence-plasmid-encoded antigens, J Med Microbiol, vol.20, pp.225-256, 1985.

V. L. Taylor, Oral immunization with a dam mutant of Yersinia pseudotuberculosis protects against plague, Microbiology, vol.151, 2005.

, International meeting on preventing and controlling plague: the old calamity still has a future, Wkly Epidemiol Rec, pp.278-84, 2006.

J. R. Stokell, A. Khan, and T. R. Steck, Mechanical homogenization increases bacterial Homogeneity in sputum, J Clin Microbiol, vol.52, pp.2340-2345, 2014.

S. Chanteau, L. Rahalison, L. Ralafiarisoa, J. Foulon, M. Ratsitorahina et al., Development and testing of a rapid diagnostic test for bubonic and pneumonic plague, Lancet, vol.361, pp.211-217, 2003.

J. Hinnebusch and T. G. Schwan, New method for plague surveillance using polymerase chain reaction to detect Yersinia pestis in fleas, J Clin Microbiol, vol.31, pp.1511-1515, 1993.

H. Tsukano, K. Itoh, S. Suzuki, and H. Watanabe, Detection and identification of Yersinia pestis by polymerase chain reaction (PCR) using multiplex primers, Microbiol Immunol, vol.40, pp.773-778, 1996.

J. Parkhill, B. W. Wren, N. R. Thomson, R. W. Titball, M. T. Holden et al., Genome sequence of Yersinia pestis, the causative agent of plague, Nature, vol.413, pp.523-530, 2001.

C. Loiez, S. Herwegh, F. Wallet, A. S. Guinet, F. Courcol et al., Detection of Yersinia pestis in sputum by real-time PCR, J Clin Microbiol, vol.41, pp.4873-4878, 2003.

S. H?-ansch, E. Cilli, G. Catalano, G. Gruppioni, R. Bianucci et al., The pla gene, encoding plasminogen activator, is not specific to Yersinia pestis, BMC Res Notes, pp.1-3, 2015.

J. M. Riehm, L. Rahalison, H. C. Scholz, B. Thoma, M. Pfeffer et al., Molecular and cellular probes, Mol Cell Probes, vol.25, pp.8-12, 2011.

M. Simonet, B. Riot, N. Fortineau, and P. Berche, Invasin production by Yersinia pestis is abolished by insertion of an IS200-like element within the inv gene, Infect Immun, vol.64, pp.375-384, 1995.

P. Matero, T. Pasanen, R. Laukkanen-ninios, P. Tissari, E. Tarkka et al., Real-time multiplex PCR assay for detection of Yersinia pestis and Yersinia pseudotuberculosis, APMIS, vol.117, pp.34-44, 2009.

. M?-ols?-a-m, H. Hemmil?-a, A. Katz, J. Niemimaa, K. M. Forbes et al., Monitoring biothreat agents (Francisella tularensis, Bacillus anthracis and Yersinia pestis) with a portable real-time PCR instrument, J Microbiol Methods, vol.115, pp.89-93, 2015.

N. Feng, Y. Zhou, Y. Fan, Y. Bi, R. Yang et al., Yersinia pestis detection by loop-mediated isothermal amplification combined with magnetic bead capture of DNA, Braz J Microbiol, vol.49, pp.128-165, 2018.

, How to safely collect sputum samples from patients suspected to be infected with pneumonic plague, pp.1-8, 2016.

M. Tourdjman, M. Ibraheem, M. Brett, E. Debess, B. Progulske et al., Misidentification of Yersinia pestis by automated systems, resulting in delayed diagnoses of human plague infectionseOregon and New Mexico, Clin Infect Dis, vol.55, pp.58-60, 2012.

J. A. Benavides-montaño and V. Vadyvaloo, Yersinia pestis resists predation by acanthamoeba castellanii and exhibits prolonged intracellular survival, Appl Environ Microbiol, vol.83, 2017.

D. W. Markman, M. F. Antolin, R. A. Bowen, W. H. Wheat, M. Woods et al., Yersinia pestis survival and replication in potential ameba reservoir, Emerg Infect Dis, vol.24, pp.294-302, 2018.

E. D'ortenzio, N. Lemaître, C. Brouat, P. Loubet, F. Sebbane et al., Plague: bridging gaps towards a better disease control, Med Maladies Infect, vol.48, pp.307-324, 2018.

A. Diepold, E. Sezgin, M. Huseyin, T. Mortimer, C. Eggeling et al., A dynamic and adaptive network of cytosolic interactions governs protein export by the T3SS injectisome, Nat Commun, vol.8, p.15940, 2017.

T. Nauth, F. Huschka, M. Schweizer, J. B. Bosse, A. Diepold et al., Visualization of translocons in Yersinia type III protein secretion machines during host cell infection, PLoS Pathog, vol.14, p.1007527, 2018.

L. Berneking, M. Schnapp, A. Rumm, C. Trasak, K. Ruckdeschel et al., Immunosuppressive Yersinia effector YopM binds DEAD box helicase DDX3 to control ribosomal S6 kinase in the nucleus of host cells, PLoS Pathog, vol.12, p.1005660, 2016.