E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych et al., Imaging intracellular fluorescent proteins at nanometer resolution, Science (80-. ), vol.313, issue.5793, pp.1642-1645, 2006.

M. J. Rust, M. Bates, and X. Zhuang, Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM), Nat Methods, vol.3, issue.10, pp.793-795, 2006.

A. Sharonov and R. M. Hochstrasser, Wide-field subdiffraction imaging by accumulated binding of diffusing probes, Proc. Natl. Acad. Sci. U. S. A, vol.103, issue.50, pp.18911-18917, 2006.

F. Huang, T. M. Hartwich, F. E. Rivera-molina, Y. Lin, W. C. Duim et al., Video-rate nanoscopy using sCMOS cameraspecific single-molecule localization algorithms, Nat. Methods, vol.10, issue.7, pp.653-661, 2013.

F. Huang, G. Sirinakis, E. S. Allgeyer, L. K. Schroeder, W. C. Duim et al., Ultra-High Resolution 3D Imaging of Whole Cells, Cell, vol.166, issue.4, pp.1028-1040, 2016.

S. Manley, J. M. Gillette, G. H. Patterson, H. Shroff, H. F. Hess et al., High-density mapping of single-molecule trajectories with photoactivated localization microscopy, Nat Methods, vol.5, issue.2, pp.155-157, 2008.

B. Neumann, T. Walter, J. K. Heriche, J. Bulkescher, H. Erfle et al., Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes, Nature, vol.464, issue.7289, pp.721-727, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01144034

N. Battich, T. Stoeger, and L. Pelkmans, Control of Transcript Variability in Single Mammalian Cells, Cell, vol.163, issue.7, pp.1596-1610, 2015.

V. Graml, X. Studera, J. L. Lawson, A. Chessel, M. Geymonat et al., A Genomic Multiprocess Survey of Machineries that Control and Link Cell Shape, Microtubule Organization, and Cell-Cycle Progression, Dev. Cell, vol.31, issue.2, pp.227-239, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01101880

*. , Almost 2 million images are analyzed and cellular features are analyzed using Bayesian networks to infer causal relations, e.g. that cell length influences microtubule length but not vice-versa

W. J. Godinez, I. Hossain, S. E. Lazic, J. W. Davies, and X. Zhang, A Multi-Scale Convolutional Neural Network for Phenotyping High-Content Cellular Images, Bioinformatics, 2017.

]. W. *11, S. R. Lemon, B. Pulver, K. Höckendorf, K. Mcdole et al., Whole-central nervous system functional imaging in larval Drosophila, Nat. Commun, vol.6, p.7924, 2015.

. R. **-;-w, L. Legant, J. B. Shao, T. A. Grimm, D. E. Brown et al., Using a fast multi-view light-sheet microscope, the authors imaged the entire central nervous system (CNS) of a fly larva at 2-5 Hz temporal resolution. Together with improved, Nat. Methods, vol.13, issue.4, pp.359-365, 2016.

*. , This work combines an advanced type of light sheet illumination (a lattice light sheet) with PAINT, a type of SMLM based on transient binding of dyes. This system enabled the authors to localize up to ~1 billion molecules with high precision and create super-resolution (<100 nm) images of cells and small organs up to 20 ?m thick

L. A. Royer, W. C. Lemon, R. K. Chhetri, Y. Wan, M. Coleman et al., Adaptive light-sheet microscopy for long-term, high-resolution imaging in living organisms, Nat. Biotechnol, vol.34, issue.12, pp.1267-1278, 2016.

J. H. Lee, G. Ozorowski, and A. B. Ward, Cryo-EM structure of a native, fully glycosylated, cleaved HIV-1 envelope trimer, vol.351, pp.1043-1048, 2016.

A. Merk, A. Bartesaghi, S. Banerjee, V. Falconieri, P. Rao et al., Breaking Cryo-EM Resolution Barriers to Facilitate Drug Discovery, Cell, vol.165, issue.7, pp.1698-1707, 2016.

*. , This study reports the first structure with 1.8 Å resolution obtained by cryo-EM single particle analysis

A. Punjani, J. L. Rubinstein, D. J. Fleet, and M. A. Brubaker, cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination, Nat. Methods, 2017.

S. Dorkenwald, P. J. Schubert, M. F. Killinger, G. Urban, S. Mikula et al., Automated synaptic connectivity inference for volume electron microscopy, Nat. Methods, 2017.

N. Kasthuri, K. J. Hayworth, D. R. Berger, R. L. Schalek, J. A. Conchello et al., Saturated Reconstruction of a Volume of Neocortex, Cell, vol.162, issue.3, pp.648-661, 2015.

. **-the, 000 µm3 piece of mouse brain was automatically cut into thousands of thin sections by an ultramicrotome and imaged by scanning electron microscopy at nanometer resolution. Using manual and automated, vol.80

A. A. Wanner, C. Genoud, T. Masudi, L. Siksou, and R. W. Friedrich, Dense EM-based reconstruction of the interglomerular projectome in the zebrafish olfactory bulb, Nat. Neurosci, vol.19, issue.6, pp.816-825, 2016.

Z. D. Stephens, S. Y. Lee, F. Faghri, R. H. Campbell, C. Zhai et al., Big Data: Astronomical or Genomical?, PLoS Biol, vol.13, issue.7, p.1002195, 2015.

P. Kanchanawong, G. Shtengel, A. M. Pasapera, E. B. Ramko, M. W. Davidson et al., Nanoscale architecture of integrin-based cell adhesions, Nature, vol.468, issue.7323, pp.580-584, 2010.

K. Xu, G. Zhong, and X. Zhuang, Actin, Spectrin, and Associated Proteins Form a Periodic Cytoskeletal Structure in Axons, Science (80-. ), vol.339, issue.6118, 2013.

A. Szymborska, A. Marco, N. Daigle, V. C. Cordes, J. A. Briggs et al., Nuclear pore scaffold structure analyzed by super-resolution microscopy and particle averaging, Science, vol.341, issue.6146, pp.655-663, 2013.

R. J. Ober, S. Ram, and E. S. Ward, Localization Accuracy in Single-Molecule Microscopy, Biophys. J, vol.86, issue.2, pp.1185-1200, 2004.

D. Sage, H. Kirshner, T. Pengo, N. Stuurman, J. Min et al., Quantitative evaluation of software packages for single-molecule localization microscopy, Nat. Methods, vol.12, issue.8, pp.717-724, 2015.

. **-references, illustrate how challenges can be used to objectively compare competing algorithms against simulated or manually defined ground truth. Ref. [25] addresses image analysis software for SMLM, ref

A. Von-diezmann, Y. Shechtman, and W. E. Moerner, Three-Dimensional Localization of Single Molecules for Super-Resolution Imaging and Single-Particle Tracking, Chem. Rev, 2017.

S. Jia, J. C. Vaughan, and X. Zhuang, Isotropic 3D Super-resolution Imaging with a Self-bending Point Spread Function, Nat. Photonics, vol.8, issue.4, pp.302-306, 2014.

P. Sengupta, T. Jovanovic-talisman, D. Skoko, M. Renz, S. L. Veatch et al., Probing protein heterogeneity in the plasma membrane using PALM and pair correlation analysis, Nat Methods, vol.8, issue.11, pp.969-975, 2011.

]. Lee, J. Y. Shin, A. Lee, and C. Bustamante, Counting single photoactivatable fluorescent molecules by photoactivated localization microscopy (PALM), Proc. Natl. Acad. Sci. U. S. A, vol.109, issue.43, pp.17436-17477, 2012.

M. P. Backlund, M. D. Lew, A. S. Backer, S. J. Sahl, and W. E. Moerner, The Role of Molecular Dipole Orientation in Single-Molecule Fluorescence Microscopy and Implications for Super-Resolution Imaging, ChemPhysChem, vol.15, issue.4, pp.587-599, 2014.

N. Chenouard, I. Smal, F. De-chaumont, M. Ma?ka, I. F. Sbalzarini et al.,

J. Magnusson, H. M. Jaldén, P. Blau, P. Paul-gilloteaux, C. Roudot et al.,

. Meijering, Objective comparison of particle tracking methods, Nat. Methods, vol.11, issue.3, pp.281-289, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00932869

N. Monnier, S. Guo, M. Mori, J. He, P. Lénárt et al., Bayesian Approach to MSD-Based Analysis of Particle Motion in Live Cells, Biophys. J, vol.103, issue.3, pp.616-626, 2012.

M. E. Beheiry, M. Dahan, and J. Masson, InferenceMAP: mapping of single-molecule dynamics with Bayesian inference, Nat. Methods, vol.12, issue.7, pp.594-595, 2015.

Z. Zhang, S. J. Kenny, M. Hauser, W. Li, and K. Xu, Ultrahigh-throughput single-molecule spectroscopy and spectrally resolved super-resolution microscopy, Nat. Methods, vol.12, issue.10, pp.935-938, 2015.

R. Jungmann, M. S. Avendaño, J. B. Woehrstein, M. Dai, W. M. Shih et al., Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and Exchange-PAINT, Nat. Methods, vol.11, issue.3, pp.313-318, 2014.

K. H. Chen, A. N. Boettiger, J. R. Moffitt, S. Wang, and X. Zhuang, Spatially resolved, highly multiplexed RNA profiling in single cells, Science, vol.348, issue.6233, p.6090, 2015.

*. , This study uses a combinatorial labeling strategy to visualize up to 1,000 distinct mRNA species in the same cells at the single molecule level. The authors use their data to determine covarying genes and propose new functional annotations for ~100 genes

B. Munsky, G. Neuert, and A. Van-oudenaarden, Using Gene Expression Noise to Understand Gene Regulation, Science (80-. ), vol.336, issue.6078, pp.183-187, 2012.

K. Tantale, F. Mueller, A. Kozulic-pirher, A. Lesne, J. Victor et al., A single-molecule view of transcription reveals convoys of RNA polymerases and multi-scale bursting, Nat. Commun, vol.7, p.12248, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01622688

M. Usaj, E. B. Styles, A. J. Verster, H. Friesen, C. Boone et al., High-Content Screening for Quantitative Cell Biology, Trends Cell Biol, vol.26, issue.8, pp.598-611, 2016.

N. Battich, T. Stoeger, and L. Pelkmans, Control of Transcript Variability in Single Mammalian Cells, Cell, vol.163, issue.7, pp.1596-1610, 2015.

T. R. Jones, A. E. Carpenter, M. R. Lamprecht, J. Moffat, S. J. Silver et al., Scoring diverse cellular morphologies in image-based screens with iterative feedback and machine learning, Proc. Natl. Acad. Sci. U. S. A, vol.106, issue.6, pp.1826-1857, 2009.

N. Battich, T. Stoeger, and L. Pelkmans, Image-based transcriptomics in thousands of single human cells at single-molecule resolution, Nat. Methods, vol.10, issue.11, pp.1127-1133, 2013.

Y. Lecun, Y. Bengio, and G. Hinton, Deep learning, Nature, vol.521, issue.7553, pp.436-444, 2015.

P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P. Manzagol, Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion, J. Mach. Learn. Res, vol.11, pp.3371-3408, 2010.

C. Kandaswamy, L. M. Silva, L. A. Alexandre, and J. M. Santos, High-Content Analysis of Breast Cancer Using Single-Cell Deep Transfer Learning, J. Biomol. Screen, vol.21, issue.3, pp.252-259, 2016.

K. Lee, H. L. Elliott, Y. Oak, C. Zee, A. Groisman et al., Functional Hierarchy of Redundant Actin Assembly Factors Revealed by Fine-Grained Registration of Intrinsic Image Fluctuations, Cell Syst, vol.1, issue.1, pp.37-50, 2015.

E. S. Welf and G. Danuser, Using Fluctuation Analysis to Establish Causal Relations between Cellular Events without Experimental Perturbation, Biophys. J, vol.107, issue.11, pp.2492-2498, 2014.

J. Huisken, J. Swoger, F. Bene, J. Wittbrodt, and E. H. Stelzer, Optical sectioning deep inside live embryos by selective plane illumination microscopy, Science (80-. ), vol.305, issue.5686, p.1007, 2004.

B. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie et al.,

J. T. Grill, G. Wang, U. S. Seydoux, D. P. Tulu, E. Kiehart et al., Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution, Science (80-. ), vol.346, issue.6208, pp.1257998-1257998, 2014.

P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. Stelzer, Reconstruction of Zebrafish Early Embryonic Development by Scanned Light Sheet Microscopy, Science (80-. ), vol.322, issue.5904, 2008.

E. G. Reynaud, J. Peychl, J. Huisken, and P. Tomancak, Guide to light-sheet microscopy for adventurous biologists, Nat. Methods, vol.12, issue.1, pp.30-34, 2014.

E. Faure, T. Savy, B. Rizzi, C. Melani, O. Sta?ová et al., A workflow to process 3D+time microscopy images of developing organisms and reconstruct their cell lineage, Nat. Commun, vol.7, p.8674, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02086959

]. J. *53, M. Delile, N. Herrmann, R. Peyriéras, and . Doursat, A cell-based computational model of early embryogenesis coupling mechanical behaviour and gene regulation, Nat. Commun, vol.8, p.13929, 2017.

*. , This study introduces an open-source software platform for simulating complex collective dynamics of thousands of cells in morphogenesis by coupling models of mechanical

M. Rauzi, U. Krzic, T. E. Saunders, M. Krajnc, P. Ziherl et al., Embryo-scale tissue mechanics during Drosophila gastrulation movements, Nat. Commun, vol.6, p.8677, 2015.

E. H. Egelman, The Current Revolution in Cryo-EM, Biophys. J, vol.110, issue.5, pp.1008-1012, 2016.

R. Henderson, Avoiding the pitfalls of single particle cryo-electron microscopy: Einstein from noise, Proc. Natl. Acad. Sci. U. S. A, vol.110, issue.45, pp.18037-18078, 2013.

J. W. Lichtman, H. Pfister, and N. Shavit, The big data challenges of connectomics, Nat. Neurosci, vol.17, issue.11, pp.1448-1454, 2014.

I. Arganda-carreras, S. C. Turaga, D. R. Berger, D. Cire?an, A. Giusti et al., Crowdsourcing the creation of image segmentation algorithms for connectomics, Front. Neuroanat, vol.9, p.142, 2015.

I. Arganda-carreras, S. C. Turaga, D. R. Berger, D. Cire?an, A. Giusti et al., Crowdsourcing the creation of image segmentation algorithms for connectomics, Front. Neuroanat, vol.9, p.142, 2015.

T. Beier, C. Pape, N. Rahaman, T. Prange, S. Berg et al., Multicut brings automated neurite segmentation closer to human performance, Nat. Methods, vol.14, issue.2, pp.101-102, 2017.

S. Takemura, A. Bharioke, Z. Lu, A. Nern, S. Vitaladevuni et al., A visual motion detection circuit suggested by Drosophila connectomics, Nature, vol.500, issue.7461, pp.175-181, 2013.

C. Franke, M. Sauer, and S. Van-de-linde, Photometry unlocks 3D information from 2D localization microscopy data, Nat. Methods, vol.14, issue.1, pp.41-44, 2016.

S. H. Scheres, Beam-induced motion correction for sub-megadalton cryo-EM particles, Elife, vol.3, p.3665, 2014.

E. G. Reynaud, J. Peychl, J. Huisken, and P. Tomancak, Guide to light-sheet microscopy for adventurous biologists, Nat. Methods, vol.12, issue.1, pp.30-34, 2014.

S. Cox, E. Rosten, J. Monypenny, T. Jovanovic-talisman, D. T. Burnette et al., Bayesian localization microscopy reveals nanoscale podosome dynamics, Nat Methods, vol.9, issue.2, pp.195-200, 2012.

P. Joubert and M. Habeck, Bayesian inference of initial models in cryoelectron microscopy using pseudo-atoms, Biophys. J, vol.108, issue.5, pp.1165-75, 2015.

S. H. Scheres, A Bayesian View on Cryo-EM Structure Determination, J. Mol. Biol, vol.415, issue.2, pp.406-418, 2012.

V. Gulshan, L. Peng, M. Coram, M. C. Stumpe, D. Wu et al., Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs, JAMA, vol.316, issue.22, p.2402, 2016.

O. Ronneberger, P. Fischer, and T. Brox, U-net: Convolutional networks for biomedical image segmentation, Medical Image Computing and Computer-Assisted Intervention -MICCAI 2015, vol.9351, pp.234-241, 2015.

E. Williams, J. Moore, S. W. Li, G. Rustici, A. Tarkowska et al., The Image Data Resource: A Scalable Platform for Biological Image Data Access, Integration, and Dissemination, 2016.

A. Iudin, P. K. Korir, J. Salavert-torres, G. J. Kleywegt, and A. Patwardhan, EMPIAR: a public archive for raw electron microscopy image data, Nat. Methods, vol.13, issue.5, pp.387-388, 2016.

M. A. Cianfrocco and A. E. Leschziner, Low cost, high performance processing of single particle cryo-electron microscopy data in the cloud, Elife, vol.4, issue.MAY, pp.1-10, 2015.

Y. S. Hu, X. Nan, P. Sengupta, J. Lippincott-schwartz, and H. Cang, Accelerating 3B single-molecule super-resolution microscopy with cloud computing, Nat. Methods, vol.10, issue.2, pp.96-97, 2013.

J. C. Sanghvi, S. Regot, S. Carrasco, J. R. Karr, M. Gutschow et al., Accelerated discovery via a whole-cell model, Nat. Methods, vol.10, issue.12, pp.1192-1195, 2013.