A. Abdipranoto, G. J. Liu, E. L. Werry, and M. R. Bennett, Mechanisms of secretion of ATP from cortical astrocytes triggered by uridine triphosphate, Neuroreport, vol.14, pp.2177-2181, 2003.

V. Abudara, M. A. Retamal, R. Del-rio, and J. A. Orellana, Synaptic Functions of Hemichannels and Pannexons: A Double-Edged Sword, Front Mol Neurosci, vol.11, p.435, 2018.

G. Ahnert-hilger, A. Munster-wandowski, and M. Holtje, Synaptic vesicle proteins: targets and routes for botulinum neurotoxins, Curr Top Microbiol Immunol, vol.364, pp.159-77, 2013.

G. Ahnert-hilger, U. Weller, M. E. Dauzenroth, E. Habermann, and M. Gratzl, The tetanus toxin light chain inhibits exocytosis, FEBS Lett, vol.242, pp.245-248, 1989.

N. Akaike, Y. Ito, M. C. Shin, K. Nonaka, Y. Torii et al., Effects of A2 type botulinum toxin on spontaneous miniature and evoked transmitter release from the rat spinal excitatory and inhibitory synapses, Toxicon, vol.56, pp.1315-1326, 2010.

F. Antonucci, C. Rossi, L. Gianfranceschi, O. Rossetto, and M. Caleo, Long-distance retrograde effects of botulinum neurotoxin A, J Neurosci, vol.28, pp.3689-3696, 2008.

K. R. Aoki, Review of a proposed mechanism for the antinociceptive action of botulinum toxin type A, NeuroToxicology, vol.26, pp.785-793, 2005.

L. T. Breen, L. M. Smyth, I. A. Yamboliev, and V. N. Mutafova-yambolieva, beta-NAD is a novel nucleotide released on stimulation of nerve terminals in human urinary bladder detrusor muscle, Am J Physiol Renal Physiol, vol.290, pp.486-495, 2006.

M. A. Breidenbach and A. T. Brunger, 2.3 A crystal structure of tetanus neurotoxin light chain, Biochemistry, vol.44, pp.7450-7457, 2005.
URL : https://hal.archives-ouvertes.fr/in2p3-00009274

J. Brunt, A. T. Carter, S. C. Stringer, and M. W. Peck, Identification of a novel botulinum neurotoxin gene cluster in Enterococcus, FEBS Lett, vol.592, pp.310-317, 2018.

K. Buckley and R. B. Kelly, Identification of a transmembrane glycoprotein specific for secretory vesicles of neuronal and endocrine cells, J. Cell Biol, vol.100, pp.1284-1294, 1985.

R. W. Bullens, G. M. O'hanlon, E. Wagner, P. C. Molenaar, K. Furukawa et al., Complex gangliosides at the neuromuscular junction are membrane receptors for autoantibodies and botulinum neurotoxin but redundant for normal synaptic function, J Neurosci, vol.22, pp.6876-6884, 2002.

A. S. Burgen, F. Dickens, and L. J. Zatman, The action of botulinum toxin on the neuromuscular junction, J Physiol, vol.109, pp.10-24, 1949.

M. Caleo and L. Restani, Direct central nervous system effects of botulinum neurotoxin, Toxicon, vol.147, pp.68-72, 1031.

F. G. Carpenter, C. J. Fowler, A. Apostolidis, W. C. De-groat, C. P. Smith et al., Motor responses of the urinary bladder and skeletal muscle in botulinum intoxicated rats, Nat Clin Pract Urol, vol.188, pp.319-328, 1036.

M. B. Chancellor and N. Yoshimura, Neurophysiology of stress urinary incontinence, Rev Urol, vol.6, pp.19-28, 2004.

E. R. Chapman, How does synaptotagmin trigger neurotransmitter release?, Annu Rev Biochem, vol.77, pp.615-656, 2008.

Y. P. Chau and K. S. Lu, Differential permeability of blood microvasculatures in various sympathetic ganglia of rodents, Anat Embryol (Berl), vol.194, pp.259-269, 1996.

B. A. Cisterna, C. Cardozo, and J. C. Saez, Neuronal involvement in muscular atrophy, Front Cell Neurosci, vol.8, p.405, 2014.

A. Coelho, F. Cruz, C. D. Cruz, and A. Avelino, Effect of onabotulinumtoxinA on intramural parasympathetic ganglia: an experimental study in the guinea pig bladder, J Urol, vol.187, pp.1121-1126, 1121.

A. Coelho, F. Cruz, C. D. Cruz, and A. Avelino, Spread of onabotulinumtoxinA after bladder injection. Experimental study using the distribution of cleaved SNAP-25 as the marker of the toxin action, Eur Urol, vol.61, pp.1178-1184, 1171.

A. Coelho, P. Dinis, R. Pinto, T. Gorgal, C. Silva et al., Distribution of the high-affinity binding site and intracellular target of botulinum toxin type A in the human bladder, Eur Urol, vol.57, pp.884-890, 1030.

A. Coelho, R. Oliveira, F. Cruz, and C. D. Cruz, Impairment of sensory afferents by intrathecal administration of botulinum toxin A improves neurogenic detrusor overactivity in chronic spinal cord injured rats, Exp Neurol, vol.285, pp.159-166, 1025.

A. Coelho, R. Oliveira, O. Rossetto, C. D. Cruz, F. Cruz et al., Intrathecal administration of botulinum toxin type A improves urinary bladder function and reduces pain in rats with cystitis, Eur J Pain, vol.23, p.513, 2014.

C. Colasante, O. Rossetto, L. Morbiato, M. Pirazzini, J. Molgo et al., Botulinum Neurotoxin Type A is Internalized and Translocated from Small Synaptic Vesicles at the Neuromuscular Junction, Mol Neurobiol, vol.48, pp.120-127, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00850323

C. Connan, C. Varela-chavez, C. Mazuet, J. Molgo, G. M. Haustant et al., Translocation and dissemination to target neurons of botulinum neurotoxin type B in the mouse intestinal wall, Cell Microbiol, vol.18, pp.282-301, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01780625

C. Connan, M. Voillequin, C. Varela-chavez, C. Mazuet, C. Leveque et al., Botulinum Neurotoxin Type B Uses a Distinct Entry Pathway Mediated By Cdc42 Into Intestinal Cells Versus Neuronal Cells, Cell Microbiol, vol.19, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-01493360

E. Contreras, G. Masuyer, N. Qureshi, S. Chawla, H. S. Dhillon et al., A neurotoxin that specifically targets Anopheles mosquitoes, Nat Commun, vol.10, p.2869, 2019.

A. Couesnon, J. Molgo, C. Connan, and M. R. Popoff, Preferential entry of botulinum neurotoxin A Hc domain trhough intestinal crypt cells and targeting to cholinergic neurons of the mouse intestine, PLoS Pathog, vol.8, 2012.

A. Couesnon, T. Shimizu, and M. R. Popoff, Differential entry of botulinum neurotoxin A into neuronal and intestinal cells, Cell Microbiol, vol.11, pp.289-308, 2009.
URL : https://hal.archives-ouvertes.fr/pasteur-01758348

M. Cui, S. Khanijou, J. Rubino, and K. R. Aoki, Subcutaneous administration of botulinum toxin A reduces formalin-induced pain, Pain, vol.107, pp.125-133, 2004.

D. Dardou, D. Dassesse, L. Cuvelier, T. Deprez, M. De-ryck et al., Distribution of SV2C mRNA and protein expression in the mouse brain with a particular emphasis on the basal ganglia system, Brain Res, vol.1367, pp.130-175, 1022.

R. Desplantes, C. Leveque, B. Muller, M. Lotierzo, G. Ferracci et al., Affinity biosensors using recombinant native membrane proteins displayed on exosomes: application to botulinum neurotoxin B receptor, Sci Rep, vol.7, p.1032, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01513204

E. C. Dickson and E. Shevky, Botulism. Studies on the Manner in Which the Toxin of Clostridium Botulinum Acts Upon the Body : Ii. The Effect Upon the Voluntary Nervous System, J Exp Med, vol.38, pp.327-346, 1923.

T. P. Do, J. Hvedstrup, and H. W. Schytz, Botulinum toxin: A review of the mode of action in migraine, Acta Neurol Scand, vol.137, pp.442-451, 2018.

J. O. Dolly, J. Black, R. S. Williams, and J. Melling, Acceptors for botulinum neurotoxin reside on motor nerve terminals and mediate its internalization, Nature, vol.307, pp.457-460, 1984.

M. Dong, H. Liu, W. H. Tepp, E. A. Johnson, R. Janz et al., Glycosylated SV2A and SV2B mediate the entry of botulinum neurotoxin E into neurons, Mol Biol Cell, vol.19, pp.5226-5237, 2008.

M. Dong, F. Yeh, W. H. Tepp, C. Dean, E. A. Johnson et al., SV2 Is the Protein Receptor for, Botulinum Neurotoxin A. Science, vol.312, pp.592-596, 2006.

N. Dover, J. R. Barash, K. K. Hill, G. Xie, and S. S. Arnon, Molecular characterization of a novel botulinum neurotoxin type H gene, J Infect Dis, vol.209, pp.192-202, 1097.

D. Dressler, Botulinum toxin therapy: its use for neurological disorders of the autonomic nervous system, J Neurol, vol.260, pp.701-713, 2013.

D. Dressler and R. Benecke, Pharmacology of therapeutic botulinum toxin preparations, Disabil Rehabil, vol.29, pp.1761-1768, 2007.

M. J. Duggan, C. P. Quinn, J. A. Chaddock, J. R. Purkiss, F. C. Alexander et al., Inhibition of release of neurotransmitters from rat dorsal root ganglia by a novel conjugate of a Clostridium botulinum toxin A endopeptidase fragment and Erythrina cristagalli lectin, J Biol Chem, vol.277, pp.34846-34852, 2002.

Y. Dunant, J. E. Esquerda, F. Loctin, J. Marsal, and D. Muller, Botulinum toxin inhibits quantal acetylcholine release and energy metabolism in the Torpedo electric organ, J Physiol, vol.385, pp.677-692, 1987.

A. R. Dunn, C. A. Hoffman, K. A. Stout, M. Ozawa, R. K. Dhamsania et al., Immunochemical analysis of the expression of SV2C in mouse, macaque and human brain, Brain Res, vol.1702, pp.85-95, 1021.

P. L. Durham, R. Cady, and R. Cady, Regulation of calcitonin gene-related peptide secretion from trigeminal nerve cells by botulinum toxin type A: implications for migraine therapy, Headache, vol.44, pp.42-75, 2004.

R. Eleopra, C. Montecucco, G. Devigili, C. Lettieri, S. Rinaldo et al., Botulinum neurotoxin serotype D is poorly effective in humans: an in vivo electrophysiological study, Clin Neurophysiol, vol.124, pp.999-1004, 1013.

M. Elliott, C. Favre-guilmard, S. M. Liu, J. Maignel, G. Masuyer et al., Engineered botulinum neurotoxin B with improved binding to human receptors has enhanced efficacy in preclinical models, 2019.

P. Emsley, C. Fotinou, I. Black, N. F. Fairweather, I. G. Charles et al., The structures of the Hc fragment of Tetanus Toxin with carbohydrate subunit complexes provide insight into ganglioside binding, J. Biol. Chem, vol.275, pp.8889-8894, 2000.

C. Fan, X. Chu, L. Wang, H. Shi, and T. Li, Botulinum toxin type A reduces TRPV1 expression in the dorsal root ganglion in rats with adjuvant-arthritis pain, Toxicon, vol.133, pp.116-122, 1013.

L. Fenicia and F. Anniballi, Infant botulism, Ann Ist Super Sanita, vol.45, pp.134-146, 2009.

E. Ferrari, C. Gu, D. Niranjan, L. Restani, C. Rasetti-escargueil et al., Synthetic self-assembling clostridial chimera for modulation of sensory functions, Bioconjug Chem, vol.24, pp.1750-1759, 2013.

B. Filipovic, I. Matak, L. Bach-rojecky, and Z. Lackovic, Central action of peripherally applied botulinum toxin type A on pain and dural protein extravasation in rat model of trigeminal neuropathy, PLoS One, vol.7, 2012.

G. M. Filippi, P. Errico, R. Santarelli, B. Bagolini, and E. Manni, Botulinum A toxin effects on rat jaw muscle spindles, Acta Otolaryngol, vol.113, pp.400-404, 1993.

A. Flores, J. Ramirez-franco, R. Desplantes, K. Debreux, G. Ferracci et al., Gangliosides interact with synaptotagmin to form the high-affinity receptor complex for botulinum neurotoxin B, Proc Natl Acad Sci, vol.116, pp.18098-18108, 2019.
URL : https://hal.archives-ouvertes.fr/inserm-02274412

P. G. Foran, N. Mohammed, G. O. Lisk, S. Nagwaney, G. W. Lawrence et al., Evaluation of the therapeutic usefulness of botulinum neurotoxin B, C1, E and F compared with the long lasting type A, J. Biol. Chem, vol.278, pp.1363-1371, 2003.

C. Fotinou, P. Emsley, I. Black, H. Ando, H. Ishida et al., The crystal structure of Tetanus Toxin Hc fragment complexed with a synthetic GT1b analogue suggests cross-linking between ganglioside receptors and the toxin, J. Biol. Chem, vol.276, pp.3274-3281, 2001.

C. K. Fox, C. A. Keet, and J. B. Strober, Recent advances in infant botulism, Pediatr Neurol, vol.32, pp.149-154, 2005.

Z. Fu, C. Chen, J. T. Barbieri, J. J. Kim, and M. R. Baldwin, Glycosylated SV2 and gangliosides as dual receptors for botulinum neurotoxin serotype F, Biochemistry, vol.48, pp.5631-5641, 2009.

Z. Fu, S. Chen, M. R. Baldwin, G. E. Boldt, A. Crawford et al., Light chain of botulinum neurotoxin serotype A: structural resolution of a catalytic intermediate, Biochemistry, vol.45, pp.8903-8911, 2006.

Y. Fujinaga and M. R. Popoff, Translocation and dissemination of botulinum neurotoxin from the intestinal tract, Toxicon, vol.147, pp.13-18, 2018.
URL : https://hal.archives-ouvertes.fr/pasteur-01826790

J. B. Furness, B. P. Callaghan, L. R. Rivera, and H. J. Cho, The enteric nervous system and gastrointestinal innervation: integrated local and central control, Adv Exp Med Biol, vol.817, pp.39-71, 2014.

M. D. Gershon, Hydroxytryptamine (serotonin) in the gastrointestinal tract, Curr Opin Endocrinol Diabetes Obes, vol.20, issue.5, pp.14-21, 2013.

Y. Gong, Y. Tagawa, M. P. Lunn, W. Laroy, M. Heffer-lauc et al., Localization of major gangliosides in the PNS: implications for immune neuropathies, Brain, vol.125, pp.2491-2506, 2002.

E. Habermann and F. Dreyer, Clostridial neurotoxins: handling and action at the cellular and molecular level, Cur. Top. Microbiol. Immunol, vol.129, pp.93-179, 1986.

V. S. Hanchanale, A. R. Rao, F. L. Martin, and S. S. Matanhelia, The unusual history and the urological applications of botulinum neurotoxin, Urol Int, vol.85, pp.125-130, 2010.

S. M. Hassan, F. G. Jennekens, G. Wieneke, and H. Veldman, Calcitonin gene-related peptide-like immunoreactivity, in botulinum toxin-paralysed rat muscles, Neuromuscul Disord, vol.4, pp.489-496, 1994.

J. Holmgren, I. Lonnroth, J. Mansson, and L. Svennerholm, Interaction of cholera toxin and membrane GM1 ganglioside of small intestine, Proc Natl Acad Sci U S A, vol.72, pp.2520-2524, 1975.

Y. Humeau, F. Doussau, N. J. Grant, and B. Poulain, How botulinum and tetanus neurotoxins block neurotransmitter release, Biochimie, vol.82, pp.427-446, 2000.

Y. Ikeda, I. V. Zabbarova, L. A. Birder, W. C. De-groat, C. J. Mccarthy et al., Botulinum neurotoxin serotype A suppresses neurotransmitter release from afferent as well as efferent nerves in the urinary bladder, Eur Urol, vol.62, pp.1157-1164, 1123.

K. Imamura, D. Spriggs, T. Ohno, and D. Kufe, Effects of botulinum toxin type D on secretion of tumor necrosis factor from human monocytes, Mol Cell Biol, vol.9, pp.2239-2243, 1989.

M. Iwamori, J. Shimomura, S. Tsuyuhara, and Y. Nagai, Gangliosides of various rat tissues: distribution of ganglio-N-tetraose-containing gangliosides and tissuecharacteristic composition of gangliosides, J Biochem, vol.95, pp.761-770, 1984.

R. Jahn and D. Fasshauer, Molecular machines governing exocytosis of synaptic vesicles, Nature, vol.490, pp.201-207, 2012.

J. Jankovic, Botulinum toxin: State of the art, Mov Disord, vol.32, pp.1131-1138, 2017.

R. Janz and T. C. Südhof, SV2C is a synaptic vesicle protein with an unusually restricted localization: anatomy of a synaptic vesicle protein family, Neurosci, vol.94, pp.1279-1290, 1999.

R. Jin, A. Rummel, T. Binz, and A. T. Brunger, Botulinum neurotoxin B recognizes its protein receptor with high affinity and specificity, Nature, vol.444, pp.1092-1095, 2006.

Y. Kamata, Y. Kimura, T. Hiroi, G. Sakaguchi, and S. Kozaki, Purification and characterization of the ganglioside-binding fragment of Clostridium botulinum type E neurotoxin, Biochim Biophys Acta, vol.1156, pp.213-218, 1993.

A. P. Karalewitz, Z. Fu, M. R. Baldwin, J. J. Kim, and J. T. Barbieri, Botulinum neurotoxin serotype C associates with dual ganglioside receptors to facilitate cell entry, J Biol Chem, vol.287, pp.40806-40816, 2012.

A. P. Karalewitz, A. R. Kroken, Z. Fu, M. R. Baldwin, J. J. Kim et al., Identification of a unique ganglioside binding loop within botulinum neurotoxins C and D-SA, Biochemistry, vol.49, pp.8117-8126, 2010.

J. A. Kiernan, Vascular permeability in the peripheral autonomic and somatic nervous systems: controversial aspects and comparisons with the blood-brain barrier, Microsc Res Tech, vol.35, pp.122-136, 1996.

M. Kitamura, K. Takamiya, S. Aizawa, and K. Furukawa, Gangliosides are the binding substances in neural cells for tetanus and botulinum toxins in mice, Biochim. Biophys. Acta, vol.1441, pp.1-3, 1999.

Y. Kitamura, Y. Matsuka, I. Spigelman, Y. Ishihara, Y. Yamamoto et al., Botulinum toxin type a (150 kDa) decreases exaggerated neurotransmitter release from trigeminal ganglion neurons and relieves neuropathy behaviors induced by infraorbital nerve constriction, Neuroscience, vol.159, pp.1422-1429, 1423.

T. Kolter, Ganglioside biochemistry. ISRN Biochem, p.506160, 2012.

A. R. Kroken, A. P. Karalewitz, Z. Fu, M. R. Baldwin, J. J. Kim et al., Unique ganglioside binding by botulinum neurotoxins C and D-SA, Febs J, vol.278, pp.4486-4496, 2011.

A. R. Kroken, A. P. Karalewitz, Z. Fu, J. J. Kim, and J. T. Barbieri, Novel gangliosidemediated entry of botulinum neurotoxin serotype D into neurons, J Biol Chem, vol.286, pp.26828-26837, 2011.

D. Kumaran, S. Eswaramoorthy, W. Furey, J. Navaza, M. Sax et al., Domain organization in Clostridium botulinum neurotoxin type E is unique: its implication in faster translocation, J Mol Biol, vol.386, pp.233-245, 2009.

D. B. Lacy and R. C. Stevens, Sequence homology and structural analysis of the clostridial neurotoxins, J. Mol. Biol, vol.291, pp.1091-1104, 1999.

D. B. Lacy, W. Tepp, A. C. Cohen, B. R. Das-gupta, and R. C. Stevens, Crystal structure of botulinum neurotoxin type A and implications for toxicity, Nature Struct. Biol, vol.5, pp.898-902, 1998.

G. W. Lawrence, K. R. Aoki, and J. O. Dolly, Excitatory cholinergic and purinergic signaling in bladder are equally susceptible to botulinum neurotoxin a consistent with co-release of transmitters from efferent fibers, J Pharmacol Exp Ther, vol.334, pp.1080-1086, 2010.

K. Lee, X. Zhong, S. Gu, A. M. Kruel, M. B. Dorner et al., Molecular basis for disruption of E-cadherin adhesion by botulinum neurotoxin A complex, Science, vol.344, pp.1405-1410, 2014.

Z. Li, A. Chalazonitis, Y. Y. Huang, J. J. Mann, K. G. Margolis et al., Essential roles of enteric neuronal serotonin in gastrointestinal motility and the development/survival of enteric dopaminergic neurons, J Neurosci, vol.31, pp.8998-9009, 2011.

K. Loiseau, M. C. Scheiber-nogueira, C. Tilikete, A. Vighetto, and G. Rode, Bladder paralysis due to foodborne botulinum toxin type B, Urol J, vol.7, pp.63-65, 2010.

P. H. Lopez and B. B. Baez, Gangliosides in Axon Stability and Regeneration, Prog Mol Biol Transl Sci, vol.156, pp.383-412, 1010.

A. Lucioni, G. T. Bales, T. L. Lotan, D. S. Mcgehee, S. P. Cook et al., Botulinum toxin type A inhibits sensory neuropeptide release in rat bladder models of acute injury and chronic inflammation, BJU Int, vol.101, pp.366-370, 2008.

S. Mahrhold, A. Rummel, H. Bigalke, B. Davletov, and T. Binz, The synaptic vesicle protein 2C mediates the uptake of botulinum neurotoxin A into phrenic nerves, FEBS Lett, vol.580, pp.2011-2014, 2006.

S. Mahrhold, J. Strotmeier, C. Garcia-rodriguez, J. Lou, J. D. Marks et al., Identification of the SV2 protein receptor-binding site of botulinum neurotoxin type E, Biochem J, vol.453, pp.37-47, 2013.

E. A. Maisey, J. D. Wadsworth, B. Poulain, C. C. Shone, J. Melling et al., Involvement of the constituent chains of botulinum neurotoxins A and B in the blockade of neurotransmitter release, Eur J Biochem, vol.177, pp.683-691, 1988.

A. B. Maksymowych, M. Rienhard, C. J. Malizio, M. C. Goodnough, E. A. Johnson et al., Pure botulinum neurotoxin is absorbed from the stomach and small intestine and produces peripheral neuromuscular blockade, Infect. Immun, vol.67, pp.4708-4712, 1999.

A. S. Mangione, I. Obara, M. Maiaru, S. M. Geranton, C. Tassorelli et al., Nonparalytic botulinum molecules for the control of pain, Pain, vol.157, pp.1045-1055, 2016.

M. J. Mansfield, T. G. Wentz, S. Zhang, E. J. Lee, M. Dong et al., Bioinformatic discovery of a toxin family in Chryseobacterium piperi with sequence similarity to botulinum neurotoxins, Sci Rep, vol.9, p.1634, 2019.

S. Marinelli, V. Vacca, R. Ricordy, C. Uggenti, A. M. Tata et al., The analgesic effect on neuropathic pain of retrogradely transported botulinum neurotoxin A involves Schwann cells and astrocytes, PLoS One, vol.7, p.47977, 2012.

G. Masuyer, J. Conrad, and P. Stenmark, The structure of the tetanus toxin reveals pHmediated domain dynamics, EMBO Rep, vol.18, pp.1306-1317, 2017.

I. Matak, O. Rossetto, and Z. Lackovic, Botulinum toxin type A selectivity for certain types of pain is associated with capsaicin-sensitive neurons, Pain, vol.155, pp.1516-1526, 1512.

T. Matsumura, Y. Jin, Y. Kabumoto, Y. Takegahara, K. Oguma et al., The HA proteins of botulinum toxin disrupt intestinal epithelial intercellular junctions to increase toxin absorption, Cell Microbiol, vol.10, pp.355-364, 2008.

T. Matsumura, Y. Sugawara, M. Yutani, S. Amatsu, H. Yagita et al., Botulinum toxin A complex exploits intestinal M cells to enter the host and exert neurotoxicity, Nat Commun, vol.6, p.6255, 2015.

A. J. May and B. C. Whaler, The absorption of Clostridium botulinum type Atoxin from the alimentary canal, Br. J. Exp. Path, vol.39, pp.307-316, 1958.

H. T. Mcmahon, P. Foran, J. O. Dolly, M. Verhage, V. M. Wiegant et al., Tetanus toxin and botulinum toxins type A and B inhibit glutamate, gammaaminobutyric acid, aspartate, and met-enkephalin release from synaptosomes. Clues to the locus of action, J Biol Chem, vol.267, pp.21338-21343, 1992.

J. Meng, J. O. Dolly, and J. Wang, Selective Cleavage of SNAREs in Sensory Neurons Unveils Protein Complexes Mediating Peptide Exocytosis Triggered by Different Stimuli, Mol Neurobiol, vol.8, 2014.

B. Merz, H. Bigalke, G. Stoll, and M. Naumann, Botulism type B presenting as pure autonomic dysfunction, Clin Auton Res, vol.13, pp.337-338, 2003.

F. A. Meunier, C. Colasante, L. Faille, M. Gastard, and J. Molgo, Upregulation of calcitonin gene-related peptide at mouse motor nerve terminals poisoned with botulinum type-A toxin, Pflugers Arch, vol.431, pp.297-298, 1996.

J. Molgo, J. X. Comella, D. Angaut-petit, M. Pecot-dechavassine, N. Tabti et al., Presynaptic actions of botulinal neurotoxins at vertebrate neuromuscular junctions, J Physiol (Paris), vol.84, pp.152-166, 1990.

M. Montal, Botulinum Neurotoxin: A Marvel of Protein Design, Annu Rev Biochem, vol.79, pp.591-617, 2010.

C. Montecucco, How do tetanus and botulinum toxins to neuronal membranes?, TIBS, vol.11, pp.314-317, 1986.

J. L. Morris, P. Jobling, and I. L. Gibbins, Botulinum neurotoxin A attenuates release of norepinephrine but not NPY from vasoconstrictor neurons, Am J Physiol Heart Circ Physiol, vol.283, pp.2627-2635, 2002.

A. Najib, P. Pelliccioni, C. Gil, and J. Aguilera, Clostridium neurotoxins influence serotonin uptake and release differently in rat brain synaptosomes, J Neurochem, vol.72, 1991.

M. Naumann, D. Dressler, M. Hallett, J. Jankovic, G. Schiavo et al., Evidence-based review and assessment of botulinum neurotoxin for the treatment of secretory disorders, Toxicon, vol.67, pp.141-52, 1023.

E. A. Neale, L. M. Bowers, M. Jia, K. E. Bateman, and L. C. Williamson, Botulinum neurotoxin A blocks synaptic vesicle exocytosis but not endocytosis at the nerve terminal, J Cell Biol, vol.147, pp.1249-1260, 1999.

T. Nishiki, Y. Kamata, Y. Nemoto, A. Omori, T. Ito et al., Identification of protein receptor for Clostridium botulinum type B neurotoxin in rat brain synaptosomes, J. Biol. Chem, vol.269, pp.10498-10503, 1994.

T. Nishiki, Y. Tokuyama, Y. Kamata, Y. Nemoto, A. Yoshida et al., The high-affinity of Clostridium botulinum type B neurotoxin to synaptotagmin II associated with gangliosides G T1B /G D1a, FEBS Lett, vol.378, pp.253-257, 1996.

J. O. Ochanda, B. Syuto, I. Ohishi, M. Naiki, and S. Kubo, Binding of Clostridium botulinum neurotoxin to gangliosides, J Biochem, vol.100, pp.27-33, 1986.

Z. P. Pang, E. Melicoff, D. Padgett, Y. Liu, A. F. Teich et al., Synaptotagmin-2 is essential for survival and contributes to Ca2+ triggering of neurotransmitter release in central and neuromuscular synapses, J Neurosci, vol.26, pp.13493-13504, 2006.

J. Park and H. J. Park, Botulinum Toxin for the Treatment of Neuropathic Pain, Toxins (Basel), vol.9, issue.9, p.9090260, 2017.

M. W. Peck, T. J. Smith, F. Anniballi, J. W. Austin, L. Bano et al., Historical Perspectives and Guidelines for Botulinum Neurotoxin Subtype Nomenclature. Toxins (Basel) 9, p.38, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-01821691

S. Pellett, W. H. Tepp, M. Bradshaw, S. R. Kalb, J. K. Dykes et al., Purification and Characterization of Botulinum Neurotoxin FA from a Genetically Modified Clostridium botulinum, Strain. mSphere, vol.1, issue.1, 2016.

S. Pellett, W. H. Tepp, and E. A. Johnson, Botulinum neurotoxins A, B, C, E, and F preferentially enter cultured human motor neurons compared to other cultured human neuronal populations, FEBS Lett, p.13508, 2019.

L. Peng, R. P. Berntsson, W. H. Tepp, R. M. Pitkin, E. A. Johnson et al., Botulinum neurotoxin D-C uses synaptotagmin I/II as receptors and human synaptotagmin II is not an effective receptor for type B, D-C, and G toxins, J Cell Sci, vol.125, pp.3233-3242, 2012.

L. Peng, W. H. Tepp, E. A. Johnson, and M. Dong, Botulinum neurotoxin D uses synaptic vesicle protein SV2 and gangliosides as receptors, PLoS Pathog, vol.7, 2011.

R. Penner, E. Neher, and F. Dreyer, Intracellularly injected tetanus toxin inhibits exocytosis in bovine adrenal chromaffin cells, Nature, vol.324, pp.76-78, 1986.

M. Pirazzini and O. Rossetto, Challenges in searching for therapeutics against Botulinum Neurotoxins, Expert Opin Drug Discov, vol.12, pp.497-510, 2017.

M. Pirazzini, O. Rossetto, R. Eleopra, and C. Montecucco, Botulinum Neurotoxins: Biology, Pharmacology, and Toxicology, Pharmacol Rev, vol.69, pp.200-235, 2017.

M. R. Popoff and C. Connan, Absorption and transport of botulinum neurotoxins, Molecular Aspects of Botulinum Neurotoxin, pp.35-68, 2014.

M. R. Popoff and J. C. Marvaud, Structural and genomic features of clostridial neurotoxins, The Comprehensive Sourcebook of Bacterial Protein Toxins, vol.2, pp.174-201, 1999.

M. R. Popoff and B. Poulain, Bacterial toxins and the nervous system: neurotoxins and multipotential toxins interacting with neuronal cells, Toxins (Basel), vol.2, pp.683-737, 2010.
URL : https://hal.archives-ouvertes.fr/pasteur-01788650

B. Poulain, J. Molgo, and S. Thesleff, Quantal neurotransmitter release and the clostridial neurotoxins' targets, Curr Top Microbiol Immunol, vol.195, pp.243-255, 1995.

B. Poulain and M. R. Popoff, Why Are Botulinum Neurotoxin-Producing Bacteria So Diverse and Botulinum Neurotoxins So Toxic?, Toxins (Basel), vol.11, issue.1, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02328868

B. Poulain, M. R. Popoff, and J. Molgo, How do the botulinum neurotoxins block neurotransmitter release: from botulism to the molecular mechanism of action, Botulinum J, vol.1, pp.14-87, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00303601

B. Poulain, L. Tauc, E. A. Maisey, J. D. Wadsworth, P. M. Mohan et al., Neurotransmitter release is blocked intracellularly by botulinum neurotoxin, and this requires uptake of both toxin polypeptides by a process mediated by the larger chain, Proc Natl Acad Sci U S A, vol.85, pp.4090-4094, 1988.

R. Ramachandran and T. L. Yaksh, Therapeutic use of botulinum toxin in migraine: mechanisms of action, Br J Pharmacol, vol.171, pp.4177-4192, 2014.

D. E. Rapp, K. W. Turk, G. T. Bales, and S. P. Cook, Botulinum toxin type A inhibits calcitonin gene-related peptide release from isolated rat bladder, J Urol, vol.175, pp.1138-1142, 2006.

R. Regazzi, K. Sadoul, P. Meda, R. B. Kelly, P. A. Halban et al., Mutational analysis of VAMP domains implicated in Ca2+-induced insulin exocytosis, Embo J, vol.15, pp.6951-6959, 1996.

L. Restani, F. Giribaldi, M. Manich, K. Bercsenyi, G. Menendez et al., Botulinum neurotoxins A and E undergo retrograde axonal transport in primary motor neurons, PLoS Pathog, vol.8, 2012.

L. Restani, E. Novelli, D. Bottari, P. Leone, I. Barone et al., Botulinum neurotoxin a impairs neurotransmission following retrograde transynaptic transport, Traffic, vol.13, pp.1083-1089, 2012.

A. Romanov, E. Pokushalov, D. Ponomarev, S. Bayramova, V. Shabanov et al., Long-term suppression of atrial fibrillation by botulinum toxin injection into epicardial fat pads in patients undergoing cardiac surgery: Three-year follow-up of a randomized study, Heart Rhythm, vol.16, pp.172-177, 1017.

R. L. Rosales, K. Arimura, S. Takenaga, and M. Osame, Extrafusal and intrafusal muscle effects in experimental botulinum toxin-A injection, Muscle Nerve, vol.19, pp.488-496, 1996.

R. L. Rosales and D. Dressler, On muscle spindles, dystonia and botulinum toxin, Eur J Neurol, vol.17, pp.71-80, 2010.

L. K. Rosow and J. B. Strober, Infant botulism: review and clinical update, Pediatr Neurol, vol.52, pp.487-492, 2015.

O. Rossetto, The binding of botulinum neurotoxins to different peripheral neurons, Toxicon, vol.147, pp.27-31, 1016.

O. Rossetto, M. Pirazzini, and C. Montecucco, Current gaps in basic science knowledge of botulinum neurotoxin biological actions, Toxicon, vol.107, pp.59-63, 2015.

O. Rossetto, M. Scorzeto, A. Megighian, and C. Montecucco, Tetanus neurotoxin. Toxicon, vol.66, pp.59-63, 1016.

A. Rummel, Two Feet on the Membrane: Uptake of Clostridial Neurotoxins, Curr Top Microbiol Immunol, vol.406, pp.1-37, 2017.

A. Rummel, T. Eichner, T. Weil, T. Karnath, A. Gutcaits et al., Identification of the protein receptor binding site of botulinum neurotoxins B and G proves the double-receptor concept, Proc Natl Acad Sci U S A, vol.104, pp.359-364, 2007.

A. Rummel, K. Hafner, S. Mahrhold, N. Darashchonak, M. Holt et al., Botulinum neurotoxins C, E and F bind gangliosides via a conserved binding site prior to stimulation-dependent uptake with botulinum neurotoxin F utilising the three isoforms of SV2 as second receptor, J Neurochem, vol.110, pp.1942-1954, 2009.

A. Rummel, T. Karnath, T. Henke, H. Bigalke, and T. Binz, Synaptotagmins I and II act as nerve cell receptors for botulinum neurotoxin G, J. Biol. Chem, vol.279, pp.30865-30870, 2004.

A. Rummel, S. Mahrhold, H. Bigalke, and T. Binz, The H cc -domain of botulinum neurotoxins A and B exhibits a singular ganglioside binding site displaying serotype specific carbohydrate interaction, Mol. Microbiol, vol.51, pp.631-643, 2004.

F. A. Russell, R. King, S. J. Smillie, X. Kodji, and S. D. Brain, Calcitonin gene-related peptide: physiology and pathophysiology, Physiol Rev, vol.94, pp.1099-1142, 2014.

Y. Safarpour and B. Jabbari, Botulinum toxin treatment of pain syndromes -an evidence based review, Toxicon, vol.147, pp.120-128, 1011.

C. Sala, J. S. Andreose, G. Fumagalli, and T. Lomo, Calcitonin gene-related peptide: possible role in formation and maintenance of neuromuscular junctions, J Neurosci, vol.15, pp.520-528, 1995.

J. Sanchez-prieto, T. S. Sihra, D. Evans, A. Ashton, J. O. Dolly et al., Botulinum toxin A blocks glutamate exocytosis from guinea-pig cerebral cortical synaptosomes, Eur J Biochem, vol.165, pp.675-681, 1987.

T. Sautter, A. Herzog, D. Hauri, and B. Schurch, Transient paralysis of the bladder due to wound botulism, Eur Urol, vol.39, pp.610-612, 2001.

R. L. Schnaar, Gangliosides of the Vertebrate Nervous System, J Mol Biol, vol.428, pp.3325-3336, 2016.

R. L. Schnaar, The Biology of Gangliosides, Adv Carbohydr Chem Biochem, vol.76, pp.113-148, 1023.

R. L. Schnaar, R. Gerardy-schahn, and H. Hildebrandt, Sialic acids in the brain: gangliosides and polysialic acid in nervous system development, stability, disease, and regeneration, Physiol Rev, vol.94, pp.461-518, 2014.

H. Schulte-baukloh, T. H. Zurawski, H. H. Knispel, K. Miller, A. Haferkamp et al., Persistence of the synaptosomal-associated protein-25 cleavage product after intradetrusor botulinum toxin A injections in patients with myelomeningocele showing an inadequate response to treatment, BJU Int, vol.100, pp.1075-1080, 2007.

A. B. Scott, Botulinum toxin injection of eye muscles to correct strabismus, Trans Am Ophthalmol Soc, vol.79, pp.734-770, 1981.

T. Shimizu, M. Shibata, H. Toriumi, T. Iwashita, M. Funakubo et al., Reduction of TRPV1 expression in the trigeminal system by botulinum neurotoxin type-A, Neurobiol Dis, vol.48, pp.367-378, 1020.

L. Simpson, The life history of a botulinum toxin molecule, Toxicon, vol.68, pp.40-59, 2013.

L. L. Simpson, The origin, structure, and pharmacological activity of botulinum toxin, Pharmacol Rev, vol.33, pp.155-188, 1981.

L. L. Simpson and M. M. Rapport, Ganglioside inactivation of botulinum toxin, J Neurochem, vol.18, pp.1341-1343, 1971.

R. R. Sloop, B. A. Cole, and R. O. Escutin, Human response to botulinum toxin injection: type B compared with type A, Neurology, vol.49, pp.189-194, 1997.

L. A. Smith, Bacterial protein toxins as biological weapons, The Comprehensive Sourcebook of Bacterial Protein Toxins, pp.1019-1030, 2006.

T. J. Smith, J. Lou, I. N. Geren, C. M. Forsyth, R. Tsai et al., Sequence variation within botulinum neurotoxin serotypes impacts antibody binding and neutralization, Infect Immun, vol.73, pp.5450-5457, 2005.

L. M. Smyth, L. T. Breen, and V. N. Mutafova-yambolieva, Nicotinamide adenine dinucleotide is released from sympathetic nerve terminals via a botulinum neurotoxin A-mediated mechanism in canine mesenteric artery, Am J Physiol Heart Circ Physiol, vol.290, pp.1818-1825, 2006.

J. Sobel, Botulism. Clin Infect Dis, vol.41, pp.1167-1173, 2005.

P. Stenmark, J. Dupuy, A. Imamura, M. Kiso, and R. C. Stevens, Crystal structure of botulinum neurotoxin type A in complex with the cell surface co-receptor GT1b-insight into the toxin-neuron interaction, PLoS Pathog, vol.4, 2008.

D. Stern, J. Weisemann, A. Le-blanc, L. Berg, S. Mahrhold et al., A lipid-binding loop of botulinum neurotoxin serotypes B, DC and G is an essential feature to confer their exquisite potency, PLoS Pathog, vol.14, 2018.

J. Strotmeier, S. Gu, S. Jutzi, S. Mahrhold, J. Zhou et al., The biological activity of botulinum neurotoxin type C is dependent upon novel types of ganglioside binding sites, Mol Microbiol, vol.81, pp.143-156, 2011.

J. Strotmeier, K. Lee, A. K. Volker, S. Mahrhold, Y. Zong et al., Botulinum neurotoxin serotype D attacks neurons via two carbohydrate-binding sites in a ganglioside-dependent manner, Biochem J, vol.431, pp.207-216, 2010.

J. Strotmeier, S. Mahrhold, N. Krez, C. Janzen, J. Lou et al., Identification of the synaptic vesicle glycoprotein 2 receptor binding site in botulinum neurotoxin A, FEBS Lett, vol.588, pp.1087-1093, 2014.

J. Strotmeier, G. Willjes, T. Binz, and A. Rummel, Human synaptotagmin-II is not a high affinity receptor for botulinum neurotoxin B and G: Increased therapeutic dosage and immunogenicity, FEBS Lett, vol.586, pp.310-313, 2012.

Y. Sugawara, T. Matsumura, Y. Takegahara, Y. Jin, Y. Tsukasaki et al., Botulinum hemagglutinin disrupts the intercellular epithelial barrier by directly binding E-cadherin, J Cell Biol, vol.189, pp.691-700, 2010.

S. Surana, A. P. Tosolini, I. F. Meyer, A. D. Fellows, S. S. Novoselov et al., The travel diaries of tetanus and botulinum neurotoxins, vol.147, pp.58-67, 2018.

L. Svennerholm, K. Bostrom, P. Fredman, B. Jungbjer, A. Lekman et al., Gangliosides and allied glycosphingolipids in human peripheral nerve and spinal cord, Biochim Biophys Acta, vol.1214, pp.90034-90035, 1094.

S. Swaminathan, Molecular structures and functional relationships in clostridial neurotoxins, Febs J, vol.278, pp.4467-4485, 2011.

S. Swaminathan and S. Eswaramoorthy, Structural analysis of the catalytic and binding sites of Clostridium botulinum neurotoxin B, Nature Struct. Biol, vol.7, pp.693-699, 2000.

C. Swartling, H. Naver, I. Pihl-lundin, E. Hagforsen, and A. Vahlquist, Sweat gland morphology and periglandular innervation in essential palmar hyperhidrosis before and after treatment with intradermal botulinum toxin, J Am Acad Dermatol, vol.51, pp.739-745, 2004.

L. Tao, L. Peng, R. P. Berntsson, S. M. Liu, S. Park et al., Engineered botulinum neurotoxin B with improved efficacy for targeting human receptors, Nat Commun, vol.8, p.53, 2017.

A. P. Tighe and G. Schiavo, Botulinum neurotoxins: Mechanism of action, Toxicon, vol.67, pp.87-93, 2012.

K. Tsukamoto, T. Kohda, M. Mukamoto, K. Takeuchi, H. Ihara et al., Binding of Clostridium botulinum types C and D neurotoxins to ganglioside and phospholipid, J. Biol. Chem, vol.280, pp.35164-35171, 2005.

T. C. Umland, L. M. Wingert, S. Swaminathan, W. F. Furey, J. J. Schmidt et al., The structure of the receptor binding fragment H c of tetanus neurotoxin, Nature Struct. Biol, vol.4, pp.788-792, 1997.

C. D. Unsworth and R. G. Johnson, Acetylcholine and ATP are coreleased from the electromotor nerve terminals of Narcine brasiliensis by an exocytotic mechanism, Proc Natl Acad Sci U S A, vol.87, pp.553-557, 1990.

K. Vajn, B. Viljetic, I. V. Degmecic, R. L. Schnaar, and M. Heffer, Differential distribution of major brain gangliosides in the adult mouse central nervous system, PLoS One, vol.8, p.75720, 2013.

W. E. Van-heyningen, The fixation of tetanus toxin by ganglioside, J. Gen. Microbiol, vol.24, pp.107-119, 1961.

C. Verderio, S. Coco, O. Rossetto, C. Montecucco, and M. Matteoli, Internalization and proteolytic action of botulinum toxins in CNS neurons and astrocytes, J Neurochem, vol.73, pp.372-379, 1999.

C. Verderio, C. Grumelli, L. Raiteri, S. Coco, S. Paluzzi et al., Traffic of botulinum toxins A and E in excitatory and inhibitory neurons, Traffic, vol.8, pp.142-153, 2007.

C. Verderio, D. Pozzi, E. Pravettoni, F. Inverardi, U. Schenk et al., SNAP-25 modulation of calcium dynamics underlies differences in GABAergic and glutamatergic responsiveness to depolarization, Neuron, vol.41, pp.599-610, 2004.

D. Weise, C. M. Weise, and M. Naumann, Central Effects of Botulinum Neurotoxin-Evidence from Human Studies, Toxins (Basel), vol.11, issue.1, 2019.

J. Weisemann, D. Stern, S. Mahrhold, B. G. Dorner, and A. Rummel, Botulinum Neurotoxin Serotype A Recognizes Its Protein Receptor SV2 by a Different Mechanism than, Botulinum Neurotoxin B Synaptotagmin. Toxins (Basel), vol.8, issue.5, 2016.

M. J. Welch, J. R. Purkiss, and K. A. Foster, Sensitivity of embryonic rat dorsal root ganglia neurons to Clostridium botulinum neurotoxins, Toxicon, vol.38, pp.245-258, 2000.

H. H. Wellhöner, Tetanus and Botulinum Neurotoxins, Selective Neurotoxicity, pp.357-417, 1992.

T. G. Wentz, T. Muruvanda, S. Lomonaco, N. Thirunavukkarasu, M. Hoffmann et al., Closed Genome Sequence of Chryseobacterium piperi Strain CTM(T)/ATCC BAA-1782, a Gram-Negative Bacterium with Clostridial Neurotoxin-Like Coding Sequences, Genome Announc, vol.5, pp.1296-01217, 2017.

G. Willjes, S. Mahrhold, J. Strotmeier, T. Eichner, A. Rummel et al., Botulinum Neurotoxin G Binds Synaptotagmin-II in a Mode Similar to That of Serotype B: Tyrosine 1186 and Lysine 1191 Cause Its Lower Affinity, Biochemistry, p.17, 2013.

S. Wonnacott and R. M. Marchbanks, Inhibition by botulinum toxin of depolarizationevoked release of (14C)acetylcholine from synaptosomes in vitro, Biochem J, vol.156, pp.701-712, 1976.

L. Xiao, J. Cheng, J. Dai, and D. Zhang, Botulinum toxin decreases hyperalgesia and inhibits P2X3 receptor over-expression in sensory neurons induced by ventral root transection in rats, Pain Med, vol.12, pp.1385-1394, 1182.

G. Yao, S. Zhang, S. Mahrhold, K. H. Lam, D. Stern et al., N-linked glycosylation of SV2 is required for binding and uptake of botulinum neurotoxin A, Nat Struct Mol Biol, vol.23, pp.656-662, 2016.

Y. Yiangou, U. Anand, W. R. Otto, M. Sinisi, M. Fox et al., Increased levels of SV2A botulinum neurotoxin receptor in clinical sensory disorders and functional effects of botulinum toxins A and E in cultured human sensory neurons, J Pain Res, vol.4, pp.347-55, 2011.

B. C. Yowler, R. D. Kensinger, and C. L. Schengrund, Botulinum neurotoxin A activity is dependent upon the presence of specific gangliosides in neuroblastoma cells expressing synaptotagmin I, J. Biol. Chem, vol.277, pp.32815-32819, 2002.

S. Zhang, R. P. Berntsson, W. H. Tepp, L. Tao, E. A. Johnson et al., Structural basis for the unique ganglioside and cell membrane recognition mechanism of botulinum neurotoxin DC, Nat Commun, vol.8, p.1637, 2017.

S. Zhang, F. Lebreton, M. J. Mansfield, S. I. Miyashita, J. Zhang et al., Identification of a Botulinum Neurotoxin-like Toxin in a Commensal Strain of Enterococcus faecium, Cell Host Microbe, vol.23, pp.169-176, 2018.

S. Zhang, G. Masuyer, J. Zhang, Y. Shen, D. Lundin et al., Identification and characterization of a novel botulinum neurotoxin, Nat Commun, vol.8, 2017.

Y. Zhang, G. W. Buchko, L. Qin, H. Robinson, and S. M. Varnum, Structural analysis of the receptor binding domain of botulinum neurotoxin serotype D, Biochem Biophys Res Commun, vol.401, pp.498-503, 1019.

I. Zornetta, D. Azarnia-tehran, G. Arrigoni, F. Anniballi, L. Bano et al., The first non Clostridial botulinum-like toxin cleaves VAMP within the juxtamembrane domain, Sci Rep, vol.6, p.30257, 2016.