B. Alipanahi, A. Delong, M. T. Weirauch, and B. J. Frey, Predicting the 472 Sequence Specificities of DNA-and RNA-Binding Proteins by Deep Learning, Biotechnology, vol.473, issue.8, pp.831-869, 2015.

C. Anders, O. Niewoehner, A. Duerst, and M. Jinek, Structural Basis of PAM-Dependent Target 475 DNA Recognition by the Cas9 Endonuclease, Nature, 0476.

S. Ayora, B. Carrasco, P. P. Cárdenas, C. E. César, and C. Cañas, , p.478

C. Marchisone and J. C. Alonso, Double-Strand Break Repair in Bacteria: A 479 View from Bacillus Subtilis, FEMS Microbiology Reviews, vol.35, issue.6, pp.1055-81, 2011.


A. Bernheim, A. Calvo-villamañán, C. Basier, L. Cui, E. P. Rocha et al., Inhibition of NHEJ Repair by Type II-A CRISPR-Cas Systems in 483 Bacteria, Nature Communications, vol.8, issue.1, p.2094, 2017.

D. Bikard, C. W. Euler, W. Jiang, M. Philip, G. W. Nussenzweig et al., Exploiting CRISPR-Cas 486 Nucleases to Produce Sequence-Specific Antimicrobials, Nature 487 Publishing Group, vol.32, pp.1146-50, 2014.

D. Bikard, A. Hatoum-aslan, D. Mucida, and L. A. Marraffini, CRISPR 489 Interference Can Prevent Natural Transformation and Virulence Acquisition during in Vivo 490 Bacterial Infection, Cell Host & Microbe, vol.12, issue.2, pp.177-86, 2012.


M. -. Chaveroche, J. Kim, C. Ghigo, and . Enfert, A Rapid Method for 493, 2000.

, Efficient Gene Replacement in the Filamentous Fungus Aspergillus Nidulans, Nucleic Acids, vol.494, issue.22, p.97

X. Chen, M. Rinsma, J. M. Janssen, J. Liu, I. Maggio et al.,

. Gonçalves, Probing the Impact of Chromatin Conformation on Genome Editing Tools, Nucleic Acids Research, vol.44, issue.13, pp.6482-92, 2016.

R. J. Citorik, M. Mimee, and T. K. Lu, Sequence-Specific Antimicrobials Using Efficiently 499 Delivered RNA-Guided Nucleases, Nat Biotechnol, vol.32, issue.11, pp.1141-1186, 2014.

J. E. Cronan, Improved Plasmid-Based System for Fully Regulated off-to-on Gene 502 Expression in Escherichia Coli: Application to Production of Toxic Proteins, Plasmid, vol.69, issue.1, pp.503-81, 2013.

L. Cui and D. Bikard, Consequences of Cas9 Cleavage in the Chromosome of Escherichia 505, 2016.

. Coli, Nucleic Acids Research

. Cui, . Lun, A. Vigouroux, F. Rousset, H. Varet et al., A CRISPRi Screen in E. Coli Reveals a Sequence-Specific Toxicity of DCas9, Nature, vol.507, 2018.
URL : https://hal.archives-ouvertes.fr/pasteur-01819630

M. S. Dillingham and S. C. Kowalczykowski, , 2008.

D. Stranded and . Breaks, Microbiology and Molecular Biology Reviews, vol.511

J. G. Doench, N. Fusi, M. Sullender, M. Hegde, E. W. Vaimberg et al.,

I. Donovan and . Smith, Optimized SgRNA Design to Maximize Activity and Minimize 514 Off-Target Effects of CRISPR-Cas9, Nature Biotechnology, vol.34, issue.2, pp.184-91, 2016.

J. G. Doench, E. Hartenian, D. B. Graham, Z. Tothova, M. Hegde et al.,

J. Xavier and D. E. Root, Rational Design of Highly Active SgRNAs for CRISPR-Cas9-518, 2014.

, Mediated Gene Inactivation, Nat Biotechnol, vol.32, issue.12, pp.1262-67

C. Engler, R. Kandzia, and S. Marillonnet, A One Pot, One Step, Precision 521 Cloning Method with High Throughput Capability, PLoS ONE, vol.3, issue.11, 2008.


G. Gasiunas and R. Barrangou, Philippe Horvath, and Virginijus Siksnys, 2012.

, Ribonucleoprotein Complex Mediates Specific DNA Cleavage for Adaptive Immunity in 525 Bacteria, Proceedings of the National Academy of Sciences, vol.109, issue.39, pp.15539-15579

D. G. Gibson, L. Young, C. Ray-yuan-chuang, C. A. Venter, I. Hutchison et al., Enzymatic Assembly of DNA Molecules up to Several Hundred Kilobases, Nature Methods, vol.529, p.343, 2009.

A. A. Gomaa, H. E. Klumpe, M. L. Luo, K. Selle, R. Barrangou et al., Programmable 531 Removal of Bacterial Strains by Use of Genome-Targeting CRISPR-Cas Systems, MBio, vol.5, issue.1, pp.532-00928, 2013.

M. Haeussler, K. Schönig, H. Eckert, A. Eschstruth, and J. Mianné,

S. Renaud and . Schneider-maunoury, Evaluation of Off-Target and on-Target 535 Scoring Algorithms and Integration into the Guide RNA Selection Tool CRISPOR, Biology, vol.536, p.148, 2016.

M. A. Horlbeck, B. Lea, B. Witkowsky, J. M. Guglielmi, L. A. Replogle et al., , p.538

J. E. Villalta, S. E. Torigoe, R. Tjian, and J. S. Weissman, Nucleosomes Impede Cas9 Access to DNA in Vivo and in Vitro, ELife, vol.539, 2016.

P. D. Hsu, E. S. Lander, and F. Zhang, Development and Applications of CRISPR-Cas9 for 542, 2014.

G. Engineering, Cell, vol.157, issue.6, pp.1262-78

W. Jiang, D. Bikard, D. Cox, F. Zhang, and L. A. Marraffini, RNA-Guided Editing of Bacterial, vol.544, 2013.

, Genomes Using CRISPR-Cas Systems, Nat Biotechnol, vol.31, issue.3, pp.233-272

M. Jinek, K. Chylinski, I. Fonfara, M. Hauer, J. A. Doudna et al., A Programmable 547 Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity, Science, vol.337, issue.6096, pp.548-816, 2012.

M. Jinek, F. Jiang, D. W. Taylor, S. H. Sternberg, E. Kaya et al., Structures, p.550, 2014.

, Cas9 Endonucleases Reveal RNA-Mediated Conformational Activation, Science, vol.343, issue.6176, pp.551-1247997

H. Kim, S. Kwon, M. Min, S. Song, J. W. Jung et al., , p.553

S. Lee, S. Yoon, and H. Kim, Deep Learning Improves 554 Prediction of CRISPR-Cpf1 Guide RNA Activity, Nature Biotechnology, vol.36, issue.3, pp.239-280, 2018.

D. P. Kingma and J. Ba, Adam: A Method for Stochastic Optimization, 2014.

M. Kolberg, K. R. Strand, P. Graff, and K. Kristoffer-andersson, Structure, Function, 559 and Mechanism of Ribonucleotide Reductases, Biochimica et Biophysica Acta -Proteins and 560 Proteomics, 2004.

C. Kuscu, S. Arslan, R. Singh, J. Thorpe, and M. Adli, Genome-Wide, vol.562, 2014.

, Analysis Reveals Characteristics of off-Target Sites Bound by the Cas9 Endonuclease, Biotechnology, vol.563, issue.7, pp.677-83

M. Labuhn, F. F. Adams, and M. Ng,

A. Charpentier, J. L. Schwarzer, J. Mateo, D. Klusmann, and . Heckl, Refined SgRNA Efficacy Prediction Improves Large-and Small-Scale CRISPR-Cas9, vol.566, 2018.

. Applications, Nucleic Acids Research, vol.46, issue.3, pp.1375-85

B. Langmead and S. L. Salzberg, Fast Gapped-Read Alignment with Bowtie 2, Methods, vol.569, issue.4, pp.357-59, 2012.

H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan et al., , p.571

R. Abecasis and . Durbin, and 1000 Genome Project Data Processing Subgroup, The, vol.572, p.22, 2009.

, Sequence Alignment/Map Format and SAMtools, vol.25, pp.573-2078

V. S. Lioy, A. Cournac, M. Marbouty, and S. Duigou, , p.575

F. Espéli, R. Boccard, and . Koszul, Multiscale Structuring of the E. Coli 576 Chromosome by Nucleoid-Associated and Condensin Proteins, Cell, vol.172, issue.4, pp.771-783, 2018.

M. A. Moreno-mateos, E. Charles, J. Vejnar, J. P. Beaudoin, E. K. Fernandez et al., , p.579

M. K. Khokha and A. J. Giraldez, CRISPRscan: Designing Highly Efficient 580 SgRNAs for CRISPR-Cas9 Targeting in Vivo, Nature Methods, vol.12, issue.10, pp.982-88, 2015.

S. Millan, K. Alvaro, R. Heilbron, and . Maclean, Positive Epistasis between Co-Infecting, vol.583, 2013.

, Plasmids Promotes Plasmid Survival in Bacterial Populations, The ISME Journal, vol.8, issue.10

, , pp.601-613

T. D. Schmittgen and K. Livak, Analyzing Real-Time PCR Data by the 586, 2008.

C. T. Comparative and . Method, Nat. Protocols, vol.3, issue.6, pp.1101-1109

S. K. Sharan, C. Lynn, . Thomason, G. Sergey, D. L. Kuznetsov et al., Recombineering: A Homologous Recombination-Based Method of Genetic Engineering, Nature Protocols, vol.588, issue.2, pp.206-229, 2009.

S. H. Sternberg, S. Redding, M. Jinek, E. C. Greene, and J. A. Doudna, DNA Interrogation by 591 the CRISPR RNA-Guided Endonuclease Cas9, Nature, vol.507, issue.7490, pp.62-67, 2014.

S. H. Sternberg, B. Lafrance, M. Kaplan, and J. A. Doudna, Conformational Control of DNA Target Cleavage by CRISPR-Cas9, Nature, vol.594, issue.7576, pp.110-595, 2015.

. St-pierre, L. François, D. G. Cui, D. Priest, I. B. Endy et al., One-Step Cloning and Chromosomal Integration of DNA, ACS Synthetic Biology, vol.597, issue.9, pp.537-598, 2013.

M. D. Szczelkun, M. S. Tikhomirova, T. Sinkunas, G. Gasiunas, T. Karvelis et al., Direct Observation of R-Loop Formation by Single RNA-Guided Cas9 and 601 Cascade Effector Complexes, Proc Natl Acad Sci U S A, vol.111, issue.27, pp.9798-9803, 2014.

I. O. Vvedenskaya, Y. Zhang, S. R. Goldman, and A. Valenti,

R. H. Taylor, B. E. Ebright, and . Nickels, Massively Systematic Transcript End, p.605, 2015.

. Readout, MASTER': Transcription Start Site Selection, Transcriptional Slippage, and 606 Transcript Yields, Molecular Cell, vol.60, issue.6, pp.953-65


T. Wang, J. J. Wei, D. M. Sabatini, and E. S. Lander, Genetic Screens in Human Cells Using the 609 CRISPR-Cas9 System, Science, vol.343, issue.6166, pp.80-84, 2014.

X. Wu, D. A. Scott, A. J. Kriz, A. C. Chiu, P. D. Hsu et al., Genome, p.611, 2014.

, Wide Binding of the CRISPR Endonuclease Cas9 in Mammalian Cells, Nat Biotechnol, 0612.

H. Xu, T. Xiao, C. Chen, W. Li, C. Meyer et al., Sequence 614 Determinants of Improved CRISPR SgRNA Design, Genome Research, vol.115, 2015.

T. Xu, Y. Li, Z. Shi, C. L. Hemme, Y. Li et al., , p.617, 2015.

, Genome Editing in Clostridium Cellulolyticum via CRISPR-Cas9 Nickase, Appl Environ, p.618

A. Microbiol,