C. Dieme, B. Rotureau, and C. Mitri, Microbial Pre-exposure and Vectorial Competence of Anopheles Mosquitoes, Front Cell Infect Microbiol, vol.7, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-01849816

L. D. Kramer, Complexity of virus-vector interactions, Curr Opin Virol, vol.21, pp.81-86, 2016.

E. Belda, B. Coulibaly, A. Fofana, A. H. Beavogui, and S. F. Traore, Preferential suppression of Anopheles gambiae host sequences allows detection of the mosquito eukaryotic microbiome, Sci Rep, vol.7, p.28607435, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-01570222

M. C. Medeiros, T. K. Anderson, J. M. Higashiguchi, U. D. Kitron, and E. D. Walker, An inverse association between West Nile virus serostatus and avian malaria infection status, Parasit Vectors, vol.7, p.415, 2014.

T. Lefevre, A. Vantaux, K. R. Dabire, K. Mouline, and A. Cohuet, Non-genetic determinants of mosquito competence for malaria parasites, PLoS Pathog, vol.9, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02411036

C. Mitri and K. D. Vernick, Anopheles gambiae pathogen susceptibility: the intersection of genetics, immunity and ecology, Curr Opin Microbiol, vol.15, pp.285-291, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-02008330

S. N. Mitchell, E. G. Kakani, A. South, P. I. Howell, and R. M. Waterhouse, Mosquito biology. Evolution of sexual traits influencing vectorial capacity in anopheline mosquitoes, Science, vol.347, pp.985-988, 2015.

P. Buscher, G. Cecchi, V. Jamonneau, and G. Priotto, Lancet, 2017.

C. M. Stone and N. Chitnis, Implications of Heterogeneous Biting Exposure and Animal Hosts on Trypanosomiasis brucei gambiense Transmission and Control, PLoS Comput Biol, vol.11, 2015.

B. Rotureau and J. Van-den-abbeele, Through the dark continent: African trypanosome development in the tsetse fly, Front Cell Infect Microbiol, vol.3, p.53, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01371315

J. R. Franco, P. P. Simarro, A. Diarra, and J. G. Jannin, Epidemiology of human African trypanosomiasis, Clin Epidemiol, vol.6, pp.257-275, 2014.

, WHO_Fact_Sheet, 2018.

H. Informal-expert-group-on-gambiense, P. Buscher, J. M. Bart, M. Boelaert, and B. Bucheton, Do Cryptic Reservoirs Threaten Gambiense-Sleeping Sickness Elimination?, Trends Parasitol, vol.34, pp.197-207, 2018.

P. Capewell, C. Cren-travaille, F. Marchesi, P. Johnston, and C. Clucas, The skin is a significant but overlooked anatomical reservoir for vector-borne African trypanosomes, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01371190

J. M. Kagira, N. Maina, J. Njenga, S. M. Karanja, and S. M. Karori, Prevalence and types of coinfections in sleeping sickness patients in kenya, J Trop Med, 2000.

M. K. N'djetchi, H. Ilboudo, M. Koffi, J. Kabore, and J. W. Kabore, The study of trypanosome species circulating in domestic animals in two human African trypanosomiasis foci of Cote d'Ivoire identifies pigs and cattle as potential reservoirs of Trypanosoma brucei gambiense, PLoS Negl Trop Dis, vol.11, 2017.

M. Diatta, A. Spiegel, L. Lochouarn, and D. Fontenille, Similar feeding preferences of Anopheles gambiae and A. arabiensis in Senegal, Trans R Soc Trop Med Hyg, vol.92, issue.98, pp.91005-91012, 1998.

H. M. Ngom-el, . Nj, Y. Ba, L. Konaté, F. O. Diallo et al., Spatio-temporal analysis of host preferences and feeding patterns of malaria vectors in the sylvo-pastoral area of Senegal: impact of landscape classes, Parasit Vectors, vol.6, issue.1, p.332, 2013.

S. N. Redmond, K. Eiglmeier, C. Mitri, K. Markianos, and W. M. Guelbeogo, Association mapping by pooled sequencing identifies TOLL 11 as a protective factor against Plasmodium falciparum in Anopheles gambiae, BMC Genomics, vol.16, p.26462916, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-02008320

E. Calvo-alvarez, C. Cren-travaille, A. Crouzols, and B. Rotureau, A new chimeric triple reporter fusion protein as a tool for in vitro and in vivo multimodal imaging to monitor the development of African trypanosomes and Leishmania parasites, Infect Genet Evol, 2018.
URL : https://hal.archives-ouvertes.fr/pasteur-01849818

G. Manzoni, S. Briquet, V. Risco-castillo, C. Gaultier, and S. Topcu, A rapid and robust selection procedure for generating drug-selectable marker-free recombinant malaria parasites, Sci Rep, vol.4, p.4760, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01359232

M. K. Bhattacharyya and N. Kumar, Effect of xanthurenic acid on infectivity of Plasmodium falciparum to Anopheles stephensi, Int J Parasitol, vol.31, pp.222-225, 2001.

C. Mitri, J. C. Jacques, I. Thiery, M. M. Riehle, and J. Xu, Fine pathogen discrimination within the APL1 gene family protects Anopheles gambiae against human and rodent malaria species, PLoS Pathog, vol.5, 2009.

G. Carissimo, E. Pondeville, M. Mcfarlane, I. Dietrich, and C. Mitri, Antiviral immunity of Anopheles gambiae is highly compartmentalized, with distinct roles for RNA interference and gut microbiota, Proc Natl Acad Sci U S A, vol.112, pp.176-185, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-01103895

C. Mitri, E. Bischoff, E. Takashima, M. Williams, and K. Eiglmeier, An Evolution-Based Screen for Genetic Differentiation between Anopheles Sister Taxa Enriches for Detection of Functional Immune Factors, PLoS Pathog, vol.11, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-01247471

A. Barquilla, M. Saldivia, R. Diaz, J. M. Bart, and I. Vidal, Third target of rapamycin complex negatively regulates development of quiescence in Trypanosoma brucei, Proc Natl Acad Sci U S A, vol.109, pp.14399-14404, 2012.

S. Dean, R. Marchetti, K. Kirk, and K. R. Matthews, A surface transporter family conveys the trypanosome differentiation signal, Nature, vol.459, pp.213-217, 2009.

K. J. Livak and T. D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method, Methods, vol.25, pp.402-408, 2001.

M. Gendrin, F. H. Rodgers, R. S. Yerbanga, J. B. Ouedraogo, and M. G. Basanez, Antibiotics in ingested human blood affect the mosquito microbiota and capacity to transmit malaria, Nat Commun, vol.6, p.5921, 2015.

M. L. Hermann-bank, K. Skovgaard, A. Stockmarr, N. Larsen, and L. Molbak, The Gut Microbiotassay: a high-throughput qPCR approach combinable with next generation sequencing to study gut microbial diversity, BMC Genomics, vol.14, p.24225361, 2013.

K. Matsuda, H. Tsuji, T. Asahara, Y. Kado, and K. Nomoto, Sensitive quantitative detection of commensal bacteria by rRNA-targeted reverse transcription-PCR, Appl Environ Microbiol, vol.73, pp.32-39, 2007.

T. Kurakawa, H. Kubota, H. Tsuji, K. Matsuda, and T. Takahashi, Intestinal Enterobacteriaceae and Escherichia coli populations in Japanese adults demonstrated by the reverse transcription-quantitative PCR and the clone library analyses, J Microbiol Methods, vol.92, pp.213-219, 2013.

P. Ewels, M. Magnusson, S. Lundin, and M. Kaller, MultiQC: summarize analysis results for multiple tools and samples in a single report, Bioinformatics, vol.32, pp.3047-3048, 2016.

Y. Liao, G. K. Smyth, and W. Shi, featureCounts: an efficient general purpose program for assigning sequence reads to genomic features, Bioinformatics, vol.30, pp.923-930, 2014.

M. I. Love, W. Huber, and S. Anders, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Genome Biol, vol.15, p.25516281, 2014.

Y. Benjamini and Y. Hochberg, Controlling the False Discovery Rate-a Practical and Powerful Approach to Multiple Testing, Journal of the Royal Statistical Society Series B-Methodological, vol.57, pp.289-300, 1995.

B. Rotureau, I. Subota, J. Buisson, and P. Bastin, A new asymmetric division contributes to the continuous production of infective trypanosomes in the tsetse fly, Development, vol.139, pp.1842-1850, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-01371317

S. E. Zamze, M. A. Ferguson, R. Collins, R. A. Dwek, and T. W. Rademacher, Characterization of the crossreacting determinant (CRD) of the glycosyl-phosphatidylinositol membrane anchor of Trypanosoma brucei variant surface glycoprotein, Eur J Biochem, vol.176, p.2458923, 1988.

R. A. Fisher, Statistical Methods for Research Workers, vol.356, 1925.

. R-core-team, R: A language and environment for statistical computing, R Foundation for Statistical Computing, 2012.

J. P. Richardson, J. L. Beecroft, R. P. Pearson, and T. W. , Procyclic tsetse fly midgut forms and culture forms of African trypanosomes share stage-and species-specific surface antigens identified by monoclonal antibodies, J Immunol, vol.136, pp.2259-2264, 1986.

I. A. Hansen, G. M. Attardo, J. H. Park, Q. Peng, and A. S. Raikhel, Target of rapamycin-mediated amino acid signaling in mosquito anautogeny, Proceedings of the National Academy of Sciences of the United States of America, vol.101, pp.10626-10631, 2004.

H. Bai, D. B. Gelman, and S. R. Palli, Mode of action of methoprene in affecting female reproduction in the African malaria mosquito, Anopheles gambiae, Pest Manag Sci, vol.66, pp.936-943, 2010.

K. Werling, W. R. Shaw, M. A. Itoe, K. A. Westervelt, and P. Marcenac, Steroid Hormone Function Controls Non-competitive Plasmodium Development in Anopheles, Cell, vol.177, pp.315-325, 2019.

A. S. Raikhel and T. S. Dhadialla, Accumulation of yolk proteins in insect oocytes, Annu Rev Entomol, vol.37, pp.217-251, 1992.

J. Sun, T. Hiraoka, N. T. Dittmer, K. H. Cho, and A. S. Raikhel, Lipophorin as a yolk protein precursor in the mosquito, Aedes aegypti. Insect Biochem Mol Biol, vol.30, issue.00, p.93, 2000.

A. Boissiere, M. T. Tchioffo, D. Bachar, L. Abate, and A. Marie, Midgut microbiota of the malaria mosquito vector Anopheles gambiae and interactions with Plasmodium falciparum infection, PLoS Pathog, vol.8, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01546176

M. T. Tchioffo, A. Boissiere, T. S. Churcher, L. Abate, and G. Gimonneau, Modulation of malaria infection in Anopheles gambiae mosquitoes exposed to natural midgut bacteria, PLoS One, vol.8, p.81663, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01546172

M. K. Rono, M. M. Whitten, M. Oulad-abdelghani, E. A. Levashina, and E. Marois, The major yolk protein vitellogenin interferes with the anti-plasmodium response in the malaria mosquito Anopheles gambiae, PLoS Biol, vol.8, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00707257

N. J. Dennison, N. Jupatanakul, and G. Dimopoulos, The mosquito microbiota influences vector competence for human pathogens, Curr Opin Insect Sci, vol.3, pp.6-13, 2014.

Y. Dong, F. Manfredini, and G. Dimopoulos, Implication of the mosquito midgut microbiota in the defense against malaria parasites, PLoS Pathog, vol.5, 2009.

H. Hurd, Manipulation of medically important insect vectors by their parasites, Annu Rev Entomol, vol.48, pp.141-161, 2003.

S. M. Brandt and D. S. Schneider, Bacterial infection of fly ovaries reduces egg production and induces local hemocyte activation, Dev Comp Immunol, vol.31, pp.1121-1130, 2007.

S. N. Mitchell and F. Catteruccia, Anopheline Reproductive Biology: Impacts on Vectorial Capacity and Potential Avenues for Malaria Control, Cold Spring Harb Perspect Med 7, 2017.

M. E. Rogers and P. A. Bates, Leishmania manipulation of sand fly feeding behavior results in enhanced transmission, PLoS Pathog, vol.3, 2007.

C. Hu, R. V. Rio, J. Medlock, L. R. Haines, and D. Nayduch, Infections with immunogenic trypanosomes reduce tsetse reproductive fitness: potential impact of different parasite strains on vector population structure, PLoS Negl Trop Dis, vol.2, 2008.

A. M. Ahmed and H. Hurd, Immune stimulation and malaria infection impose reproductive costs in Anopheles gambiae via follicular apoptosis, Microbes Infect, vol.8, pp.308-315, 2006.

J. A. Hopwood, A. M. Ahmed, A. Polwart, G. T. Williams, and H. Hurd, Malaria-induced apoptosis in mosquito ovaries: a mechanism to control vector egg production, J Exp Biol, vol.204, pp.2773-2780, 2001.