K. R. Rumah, J. Linden, V. A. Fischetti, and T. Vartanian, Isolation of Clostridium perfringens type B in an individual at first clinical presentation of multiple sclerosis provides clues for environmental triggers of the disease, PLoS ONE, vol.8, p.76359, 2013.

K. R. Rumah, The myelin and lymphocyte protein MAL is required for binding and activity of Clostridium perfringens epsilon-Toxin, PLoS Pathog, vol.11, p.1004896, 2015.

S. Wagley, Evidence of Clostridium perfringens epsilon toxin associated with multiple sclerosis, Mult. Scler, vol.25, pp.653-660, 2018.
URL : https://hal.archives-ouvertes.fr/pasteur-02453931

A. F. Habeeb, Studies on epsilon-prototoxin of Clostridium perfringens type D. Physicochemical and chemical properties of epsilon-prototoxin, Biochim. Biophys. Acta, vol.412, pp.62-69, 1975.

J. Minami, S. Katayama, O. Matsushita, C. Matsushita, and A. Okabe, Lambdatoxin of Clostridium perfringens activates the precursor of epsilon-toxin by releasing its N-and C-terminal peptides, Microbiol. Immunol, vol.41, pp.527-535, 1997.

S. Miyata, Cleavage of a C-terminal peptide is essential for heptamerization of Clostridium perfringens epsilon-toxin in the synaptosomal membrane, J. Biol. Chem, vol.276, pp.13778-13783, 2001.

R. W. Worthington and M. S. Mulders, Physical changes in the epsilon prototoxin molecule of Clostridium perfringens during enzymatic activation, Infect. Immun, vol.18, pp.549-551, 1977.

M. Nagahama and J. Sakurai, Distribution of labeled Clostridium perfringens epsilon toxin in mice, Toxicon, vol.29, pp.211-217, 1991.

L. Wioland, J. L. Dupont, J. L. Bossu, M. R. Popoff, and B. Poulain, Attack of the nervous system by Clostridium perfringens Epsilon toxin: from disease to mode of action on neural cells, Toxicon, vol.75, pp.122-135, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01793122

M. Podobnik, M. Kisovec, and G. Anderluh, Molecular mechanism of pore formation by aerolysin-like proteins, Philos Trans. R. Soc. Lond. Ser. B, vol.372, p.20160209, 2017.

P. Szczesny, Extending the aerolysin family: from bacteria to vertebrates, PLoS ONE, vol.6, p.20349, 2011.

J. M. Janda and S. L. Abbott, Evolving concepts regarding the genus Aeromonas: an expanding panorama of species, disease presentations, and unanswered questions, Clin. Infect. Dis, vol.27, pp.332-344, 1998.

D. C. Briggs, Structure of the food-poisoning Clostridium perfringens enterotoxin reveals similarity to the aerolysin-like pore-forming toxins, J. Mol. Biol, vol.413, pp.138-149, 2011.

J. Ballard, J. Crabtree, B. A. Roe, and R. K. Tweten, The primary structure of Clostridium septicum alpha-toxin exhibits similarity with that of Aeromonas hydrophila aerolysin, Infect. Immun, vol.63, pp.340-344, 1995.

P. Leone, X-ray and cryo-electron microscopy structures of monalysin pore-forming toxin reveal multimerization of the pro-form, J. Biol. Chem, vol.290, pp.13191-13201, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01438997

H. Shogomori and T. Kobayashi, Lysenin: a sphingomyelin specific poreforming toxin, Biochim. Biophys. Acta, vol.1780, pp.612-618, 2008.

D. Sher, Hydralysins, a new category of ?-pore-forming toxins in cnidaria, J. Biol. Chem, vol.280, pp.22847-22855, 2005.

T. Akiba, Crystal structure of the parasporin-2 Bacillus thuringiensis toxin that recognizes cancer cells, J. Mol. Biol, vol.386, pp.121-133, 2009.

M. T. Degiacomi, Molecular assembly of the aerolysin pore reveals a swirling membrane-insertion mechanism, Nat. Chem. Biol, vol.9, pp.623-629, 2013.

M. Bokori-brown, Cryo-EM structure of lysenin pore elucidates membrane insertion by an aerolysin family protein, Nat. Commun, vol.7, p.11293, 2016.

A. R. Cole, Clostridium perfringens epsilon-toxin shows structural similarity to the pore-forming toxin aerolysin, Nat. Struct. Mol. Biol, vol.11, pp.797-798, 2004.

M. Bokori-brown, Clostridium perfringens epsilon toxin H149A mutant as a platform for receptor binding studies, Protein Sci, vol.22, pp.650-659, 2013.

C. M. Fennessey, S. E. Ivie, and M. S. Mcclain, Coenzyme depletion by members of the aerolysin family of pore-forming toxins leads to diminished ATP levels and cell death, Mol. Biosyst, vol.8, pp.2097-2105, 2012.

D. M. Gill, Bacterial toxins: a table of lethal amounts, Microbiol. Rev, vol.46, pp.86-94, 1982.

N. J. Mantis, Vaccines against the category B toxins: Staphylococcal enterotoxin B, epsilon toxin and ricin, Adv. Drug Deliv. Rev, vol.57, pp.1424-1439, 2005.

C. D. Lindsay, Assessment of aspects of the toxicity of Clostridium perfringens epsilon-toxin using the MDCK cell line, Hum. Exp. Toxicol, vol.15, pp.904-908, 1996.

C. D. Lindsay, J. L. Hambrook, and D. G. Upshall, Examination of toxicity of Clostridium perfringens-toxin in the MDCK cell line, Toxicol. Vitr, vol.9, pp.213-218, 1995.

M. Nagahama, S. Ochi, and J. Sakurai, Assembly of Clostridium perfringens epsilon-toxin on MDCK cell membrane, J. Nat. Toxins, vol.7, pp.291-302, 1998.

L. Petit, Clostridium perfringens epsilon-toxin acts on MDCK cells by forming a large membrane complex, J. Bacteriol, vol.179, pp.6480-6487, 1997.

M. Nagahama, H. Hara, M. Fernandez-miyakawa, Y. Itohayashi, and J. Sakurai, Oligomerization of Clostridium perfringens epsilon-toxin is dependent upon membrane fluidity in liposomes, Biochemistry, vol.45, pp.296-302, 2006.

E. M. Nestorovich, V. A. Karginov, and S. M. Bezrukov, Polymer partitioning and ion selectivity suggest asymmetrical shape for the membrane pore formed by epsilon toxin, Biophys. J, vol.99, pp.782-789, 2010.

L. Petit, E. Maier, M. Gibert, M. R. Popoff, and R. Benz, Clostridium perfringens epsilon toxin induces a rapid change of cell membrane permeability to ions and forms channels in artificial lipid bilayers, J. Biol. Chem, vol.276, pp.15736-15740, 2001.
URL : https://hal.archives-ouvertes.fr/pasteur-01811229

S. L. Robertson, J. Li, F. A. Uzal, and B. A. Mcclane, Evidence for a prepore stage in the action of Clostridium perfringens epsilon toxin, PLoS ONE, vol.6, p.22053, 2011.

H. Shimada and S. Kitada, Mega assemblages of oligomeric aerolysin-like toxins stabilized by toxin-associating membrane proteins, J. Biochem, vol.149, pp.103-115, 2011.

M. Podobnik, Crystal structure of an invertebrate cytolysin pore reveals unique properties and mechanism of assembly, Nat. Commun, vol.7, p.11598, 2016.

I. Iacovache, Cryo-EM structure of aerolysin variants reveals a novel protein fold and the pore-formation process, Nat. Commun, vol.7, p.12062, 2016.

M. Moniatte, F. G. Van-der-goot, J. T. Buckley, F. Pattus, and A. Van-dorsselaer, Characterisation of the heptameric pore-forming complex of the Aeromonas toxin aerolysin using MALDI-TOF mass spectrometry, FEBS Lett, vol.384, pp.269-272, 1996.

Y. Tsitrin, Conversion of a transmembrane to a water-soluble protein complex by a single point mutation, Nat. Struct. Biol, vol.9, pp.729-733, 2002.

M. Boley, K. Langenbach, and B. Beck, Rapid Identification of Cell Lines Sensitive to Clostridium perfringens Epsilon Toxin (American Type Culture Collection, 2010.

R. Danev and W. Baumeister, Cryo-EM single particle analysis with the Volta phase plate, Elife, vol.5, 2016.

N. Cirauqui, L. A. Abriata, F. G. Van-der-goot, and M. Peraro, Structural, physicochemical and dynamic features conserved within the aerolysin poreforming toxin family, Sci. Rep, vol.7, p.13932, 2017.

M. Bokori-brown, Molecular basis of toxicity of Clostridium perfringens epsilon toxin, FEBS J, vol.278, pp.4589-4601, 2011.

O. Knapp, E. Maier, R. Benz, B. Geny, and M. R. Popoff, Identification of the channel-forming domain of Clostridium perfringens Epsilon-toxin (ETX)

, Biochim. Biophys. Acta, vol.1788, pp.2584-2593, 2009.

I. Iacovache, A rivet model for channel formation by aerolysin-like poreforming toxins, EMBO J, vol.25, pp.457-466, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00068699

P. C. Oyston, D. W. Payne, H. L. Havard, E. D. Williamson, and R. W. Titball, Production of a non-toxic site-directed mutant of Clostridium perfringens epsilon-toxin which induces protective immunity in mice, Microbiology, vol.144, pp.333-341, 1998.

S. E. Ivie and M. S. Mcclain, Identification of amino acids important for binding of Clostridium perfringens epsilon toxin to host cells and to HAVCR1, Biochemistry, vol.51, pp.7588-7595, 2012.

B. J. Greber, D. B. Toso, J. Fang, and E. Nogales, The complete structure of the human TFIIH core complex, Elife, vol.8, p.44771, 2019.

Z. Jiang, J. Chang, F. Wang, and L. Yu, Identification of tyrosine 71 as a critical residue for the cytotoxic activity of Clostridium perfringens epsilon toxin towards MDCK cells, J. Microbiol, vol.53, pp.141-146, 2015.

L. Abrami, Sensitivity of polarized epithelial cells to the pore-forming toxin aerolysin, Infect. Immun, vol.71, pp.739-746, 2003.
URL : https://hal.archives-ouvertes.fr/pasteur-00167029

L. Petit, Clostridium perfringens epsilon toxin rapidly decreases membrane barrier permeability of polarized MDCK cells, Cell Microbiol, vol.5, pp.155-164, 2003.

M. Bokori-brown, Clostridium perfringens epsilon toxin mutant Y30A-Y196A as a recombinant vaccine candidate against enterotoxemia, Vaccine, vol.32, pp.2682-2687, 2014.

J. Zivanov, New tools for automated high-resolution cryo-EM structure determination in RELION-3, vol.7, p.42166, 2018.

S. Q. Zheng, MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy, Nat. Methods, vol.14, pp.331-332, 2017.

K. Zhang, Gctf: real-time CTF determination and correction, J. Struct. Biol, vol.193, pp.1-12, 2016.

P. V. Afonine, Real-space refinement in PHENIX for cryo-EM and crystallography, Acta Crystallogr. D, vol.74, pp.531-544, 2018.