C. Elwell, K. Mirrashidi, and J. Engel, Chlamydia cell biology and pathogenesis, Nat. Rev. Microbiol, vol.14, pp.385-400, 2016.

L. Newman, Global estimates of the prevalence and incidence of four curable sexually transmitted infections in 2012 based on systematic review and global reporting, PLoS One, vol.10, p.143304, 2015.

E. Roulis, Comparative genomic analysis of human Chlamydia pneumoniae isolates from respiratory, brain and cardiac tissues, Genomics, vol.106, pp.373-383, 2015.

W. C. Webley and D. L. Hahn, Infection-mediated asthma: Etiology, mechanisms and treatment options, with focus on Chlamydia pneumoniae and macrolides, Respir. Res, vol.18, p.98, 2017.

B. J. Balin, Chlamydia pneumoniae: An etiologic agent for late-onset dementia, Front. Aging Neurosci, vol.10, p.302, 2018.

D. Cossu, K. Yokoyama, and N. Hattori, Bacteria-host interactions in multiple sclerosis, Front. Microbiol, vol.9, p.2966, 2018.

P. Zhan, Chlamydia pneumoniae infection and lung cancer risk: A meta-analysis, Eur. J. Cancer, vol.47, pp.742-747, 2011.

P. Cossart and A. Helenius, Endocytosis of viruses and bacteria, Cold Spring Harb. Perspect. Biol, vol.6, p.16972, 2014.

M. M. Weber and R. Faris, Subversion of the endocytic and secretory pathways by bacterial effector proteins. Front, Cell Dev. Biol, vol.6, p.1, 2018.

B. A. Weigele, R. C. Orchard, A. Jimenez, G. W. Cox, and N. M. Alto, A systematic exploration of the interactions between bacterial effector proteins and host cell membranes, Nat. Commun, vol.8, p.532, 2017.

N. M. Alto, The type III effector EspF coordinates membrane trafficking by the spatiotemporal activation of two eukaryotic signaling pathways, J. Cell Biol, vol.178, pp.1265-1278, 2007.

N. Bendris and S. L. Schmid, Endocytosis, metastasis and beyond: Multiple facets of SNX9, Trends Cell Biol, vol.27, pp.189-200, 2017.

M. De-souza-santos and K. Orth, Subversion of the cytoskeleton by intracellular bacteria: Lessons from Listeria, Salmonella and Vibrio, Cell. Microbiol, vol.17, pp.164-173, 2015.

O. L. Mooren, B. J. Galletta, and J. A. Cooper, Roles for actin assembly in endocytosis, Annu. Rev. Biochem, vol.81, pp.661-686, 2012.

O. Pylypenko, A combinatorial approach to crystallization of PX-BAR unit of the human Sorting Nexin 9, J. Struct. Biol, vol.162, pp.356-360, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02349708

F. Daste, Control of actin polymerization via the coincidence of phosphoinositides and high membrane curvature, J. Cell Biol, vol.216, pp.3745-3765, 2017.

P. , EphrinA2 receptor (EphA2) is an invasion and intracellular signaling receptor for Chlamydia trachomatis, PLoS Pathog, vol.11, p.1004846, 2015.

A. L. Patel, Activation of epidermal growth factor receptor is required for Chlamydia trachomatis development, BMC Microbiol, vol.14, p.277, 2014.

K. Mölleken, E. Becker, and J. H. Hegemann, The Chlamydia pneumoniae invasin protein Pmp21 recruits the EGF receptor for host cell entry, PLoS Pathog, vol.9, p.1003325, 2013.

K. Mölleken and J. H. Hegemann, Acquisition of Rab11 and Rab11-Fip2-A novel strategy for Chlamydia pneumoniae early survival, PLoS Pathog, vol.13, p.1006556, 2017.

R. Zrieq, C. Braun, and J. H. Hegemann, The Chlamydia pneumoniae Tarp ortholog CPn0572 stabilizes host F-actin by displacement of cofilin, Front. Cell. Infect. Microbiol, vol.7, p.511, 2017.

S. Hower, K. Wolf, and K. A. Fields, Evidence that CT694 is a novel Chlamydia trachomatis T3S substrate capable of functioning during invasion or early cycle development, Mol. Microbiol, vol.72, pp.1423-1437, 2009.

M. J. Mckuen, K. E. Mueller, Y. S. Bae, and K. A. Fields, Fluorescence-reported allelic exchange mutagenesis reveals a role for Chlamydia trachomatis TmeA in invasion that is independent of host AHNAK, Infect. Immun, vol.85, pp.640-657, 2017.

S. A. Mojica, SINC, a type III secreted protein of Chlamydia psittaci, targets the inner nuclear membrane of infected cells and uninfected neighbors, Mol. Biol. Cell, vol.26, pp.1918-1934, 2015.

A. Subtil, C. Parsot, and A. Dautry-varsat, Secretion of predicted Inc proteins of Chlamydia pneumoniae by a heterologous type III machinery, Mol. Microbiol, vol.39, pp.792-800, 2001.

A. Allaoui, P. J. Sansonetti, and C. Parsot, MxiD, an outer membrane protein necessary for the secretion of the Shigella flexneri lpa invasins, Mol. Microbiol, vol.7, pp.59-68, 1993.

R. Ménard, P. J. Sansonetti, and C. Parsot, Nonpolar mutagenesis of the ipa genes defines IpaB, IpaC, and IpaD as effectors of Shigella flexneri entry into epithelial cells, J. Bacteriol, vol.175, pp.5899-5906, 1993.

H. D. Bullock, S. Hower, and K. A. Fields, Domain analyses reveal that Chlamydia trachomatis CT694 protein belongs to the membrane-localized family of type III effector proteins, J. Biol. Chem, vol.287, pp.28078-28086, 2012.

H. T. Mcmahon and E. Boucrot, Membrane curvature at a glance, J. Cell Sci, vol.128, pp.1065-1070, 2015.

J. Zimmerberg and M. M. Kozlov, How proteins produce cellular membrane curvature, Nat. Rev. Mol. Cell Biol, vol.7, pp.9-19, 2006.

T. Itoh, Dynamin and the actin cytoskeleton cooperatively regulate plasma membrane invagination by BAR and F-BAR proteins, Dev. Cell, vol.9, pp.791-804, 2005.

S. Guerrier, The F-BAR domain of srGAP2 induces membrane protrusions required for neuronal migration and morphogenesis, Cell, vol.138, pp.990-1004, 2009.

P. A. Leventis and S. Grinstein, The distribution and function of phosphatidylserine in cellular membranes, Annu. Rev. Biophys, vol.39, pp.407-427, 2010.

G. R. Hammond, M. P. Machner, and T. Balla, A novel probe for phosphatidylinositol 4-phosphate reveals multiple pools beyond the Golgi, J. Cell Biol, vol.205, pp.113-126, 2014.

H. I. Ingólfsson, Lipid organization of the plasma membrane, J. Am. Chem. Soc, vol.136, pp.14554-14559, 2014.

L. J. Ball, R. Kühne, J. Schneider-mergener, and H. Oschkinat, Recognition of proline-rich motifs by protein-protein-interaction domains, Angew. Chem. Int. Ed. Engl, vol.44, pp.2852-2869, 2005.

N. Kurochkina and U. Guha, SH3 domains: Modules of protein-protein interactions, vol.5, pp.29-39, 2013.

K. Saksela and P. Permi, SH3 domain ligand binding: What's the consensus and where's the specificity?, FEBS Lett, vol.586, pp.2609-2614, 2012.

M. Marsh and H. T. Mcmahon, The structural era of endocytosis, Science, vol.285, pp.215-220, 1999.

X. Jiang, F. Huang, A. Marusyk, and A. Sorkin, Grb2 regulates internalization of EGF receptors through clathrin-coated pits, Mol. Biol. Cell, vol.14, pp.858-870, 2003.

G. D. Visser and N. L. Lill, The Cbl RING finger C-terminal flank controls epidermal growth factor receptor fate downstream of receptor ubiquitination, Exp. Cell Res, vol.311, pp.281-293, 2005.

K. Haglund, N. Shimokawa, I. Szymkiewicz, and I. Dikic, Cbl-directed monoubiquitination of CIN85 is involved in regulation of ligand-induced degradation of EGF receptors, Proc. Natl. Acad. Sci. U.S.A, vol.99, pp.12191-12196, 2002.

R. Lundmark and S. R. Carlsson, SNX9-A prelude to vesicle release, J. Cell Sci, vol.122, pp.5-11, 2009.

J. Park, H. Zhao, and S. Chang, The unique mechanism of SNX9 BAR domain for inducing membrane tubulation, Mol. Cells, vol.37, pp.753-758, 2014.

D. Llères, Quantitative FLIM-FRET microscopy to monitor nanoscale chromatin compaction in Vivo reveals structural roles of condensin complexes, Cell Rep, vol.18, pp.1791-1803, 2017.

Y. Long, Optimizing FRET-FLIM labeling conditions to detect nuclear protein interactions at native expression levels in living Arabidopsis roots, Front. Plant Sci, vol.9, p.639, 2018.

S. Baumann, S. Zander, S. Weidtkamp-peters, and M. Feldbrügge, Live cell imaging of septin dynamics in Ustilago maydis, Methods Cell Biol, vol.136, pp.143-159, 2016.

S. Neumann and S. L. Schmid, Dual role of BAR domain-containing proteins in regulating vesicle release catalyzed by the GTPase, dynamin-2, J. Biol. Chem, vol.288, pp.25119-25128, 2013.

N. Shin, SNX9 regulates tubular invagination of the plasma membrane through interaction with actin cytoskeleton and dynamin 2, J. Cell Sci, vol.121, pp.1252-1263, 2008.

J. Schöneberg, Lipid-mediated PX-BAR domain recruitment couples local membrane constriction to endocytic vesicle fission, Nat. Commun, vol.8, p.15873, 2017.

K. A. Sochacki, A. M. Dickey, M. P. Strub, and J. W. Taraska, Endocytic proteins are partitioned at the edge of the clathrin lattice in mammalian cells, Nat. Cell Biol, vol.19, pp.352-361, 2017.

M. Kaksonen and A. Roux, Mechanisms of clathrin-mediated endocytosis, Nat. Rev. Mol. Cell Biol, vol.19, pp.313-326, 2018.

F. Soulet, D. Yarar, M. Leonard, and S. L. Schmid, SNX9 regulates dynamin assembly and is required for efficient clathrin-mediated endocytosis, Mol. Biol. Cell, vol.16, pp.2058-2067, 2005.

R. Tapia, S. E. Kralicek, and G. A. Hecht, EPEC effector EspF promotes Crumbs3 endocytosis and disrupts epithelial cell polarity, Cell. Microbiol, vol.19, p.12757, 2017.

H. L. Piscatelli, M. Li, and D. Zhou, Dual 4-and 5-phosphatase activities regulate SopBdependent phosphoinositide dynamics to promote bacterial entry, Cell. Microbiol, vol.18, pp.705-719, 2016.

J. Park, SNX18 shares a redundant role with SNX9 and modulates endocytic trafficking at the plasma membrane, J. Cell Sci, vol.123, pp.1742-1750, 2010.

J. Luo, Characterization of hypothetical proteins Cpn0146, 0147, 0284 & 0285 that are predicted to be in the Chlamydia pneumoniae inclusion membrane, BMC Microbiol, vol.7, p.38, 2007.

S. Birkelund, Characterization of two conformational epitopes of the Chlamydia trachomatis serovar L2 DnaK immunogen, Infect. Immun, vol.64, pp.810-817, 1996.

L. Mathivet, S. Cribier, and P. F. Devaux, Shape change and physical properties of giant phospholipid vesicles prepared in the presence of an AC electric field, Biophys. J, vol.70, pp.1112-1121, 1996.