L. Petit, M. Gibert, and M. R. Popoff, Clostridium perfringens enterotoxin and C. perfringens food poisoning, Encyclopedia of Food Microbiology

R. Robinson, C. Batt, and P. Patel, , pp.438-444, 1999.

J. C. Freedman, A. Shrestha, and B. A. Mcclane, Clostridium perfringens enterotoxin: Action, genetics, and translational applications, Toxins, vol.8, p.73, 2016.

J. I. Rood, V. Adams, J. Lacey, D. Lyras, B. A. Mcclane et al., Expansion of the Clostridium perfringens toxin-based typing scheme, Anaerobe, 2018.

S. J. Billington, E. U. Wieckowski, M. R. Sarker, D. Bueschel, J. G. Songer et al., Clostridium perfringens type E animal enteritis isolates with highly conserved, silent enterotoxin gene sequences, Infect. Immun, vol.66, pp.4531-4536, 1998.

K. Miyamoto, N. Yumine, K. Mimura, M. Nagahama, J. Li et al., Identification of novel Clostridium perfringens type e strains that carry an iota toxin plasmid with a functional enterotoxin gene, PLoS ONE, vol.6, 2011.

J. Li, D. Paredes-sabja, M. R. Sarker, and B. A. Mcclane, Clostridium perfringens sporulation and sporulation-associated toxin production

D. Gunzel and A. S. Yu, Claudins and the modulation of tight junction permeability, Physiol. Rev, vol.93, pp.525-569, 2013.

M. R. Popoff and B. Geny, Multifaceted role of Rho, Rac, Cdc42 and ras in intercellular junctions, lessons from toxins, Biochim. Biophys. Acta, vol.1788, pp.797-812, 2009.

C. M. Van-itallie and J. M. Anderson, Claudin interactions in and out of the tight junction

K. Fujita, J. Katahira, Y. Horiguchi, N. Sonoda, M. Furuse et al., Clostridium perfringens enterotoxin binds to the second extracellular loop of claudin-3, a tight junction integral membrane protein, FEBS Lett, vol.476, pp.258-261, 2000.

L. A. Mitchell and M. Koval, Specificity of interaction between Clostridium perfringens enterotoxin and claudin-family tight junction proteins, Toxins, vol.2, pp.1595-1611, 2010.

M. Eichner, J. Protze, A. Piontek, G. Krause, and J. Piontek, Targeting and alteration of tight junctions by bacteria and their virulence factors such as Clostridium perfringens enterotoxin, Pflugers Arch, vol.469, pp.77-90, 2017.

B. A. Mcclane, The complex interactions between Clostridium perfringens enterotoxin and epithelial tight junctions, Toxicon, vol.39, pp.1781-1791, 2001.

Z. Lu, L. Ding, Q. Lu, and Y. H. Chen, Claudins in intestines: Distribution and functional significance in health and diseases

J. P. Garcia, J. Li, A. Shrestha, J. C. Freedman, J. Beingesser et al., Clostridium perfringens type A enterotoxin damages the rabbit colon, Infect. Immun, vol.82, pp.2211-2218, 2014.

A. Shrestha, F. A. Uzal, and B. A. Mcclane, The interaction of Clostridium perfringens enterotoxin with receptor claudins, Anaerobe, vol.41, pp.18-26, 2016.

F. A. Uzal, J. C. Freedman, A. Shrestha, J. R. Theoret, J. Garcia et al., Towards an understanding of the role of Clostridium perfringens toxins in human and animal disease, Future Microbiol, vol.9, pp.361-377, 2014.

Z. Gao and B. A. Mcclane, Use of Clostridium perfringens enterotoxin and the enterotoxin receptor-binding domain (c-cpe) for cancer treatment: Opportunities and challenges, J. Toxicol, 2012.

S. L. Robertson, J. G. Smedley, U. Singh, G. Chakrabarti, C. M. Van-itallie et al., Compositional and stoichiometric analysis of Clostridium perfringens enterotoxin complexes in caco-2 cells and claudin 4 fibroblast transfectants, Cell. Microbiol, vol.9, pp.2734-2755, 2007.

A. Veshnyakova, J. Piontek, J. Protze, N. Waziri, I. Heise et al., Mechanism of Clostridium perfringens enterotoxin interaction with claudin-3/-4 protein suggests structural modifications of the toxin to target specific claudins, J. Biol. Chem, vol.287, pp.1698-1708, 2012.

J. Kimura, H. Abe, S. Kamitani, H. Toshima, A. Fukui et al., Clostridium perfringens enterotoxin interacts with claudins via electrostatic attraction, J. Biol. Chem, vol.285, pp.401-408, 2010.

G. Chakrabarti, X. Zhou, and B. A. Mcclane, Death pathways activated in caco-2 cells by Clostridium perfringens enterotoxin, Infect. Immun, vol.71, pp.4260-4270, 2003.

M. Eichner, C. Augustin, A. Fromm, A. Piontek, W. Walther et al., In colon epithelia, Clostridium perfringens enterotoxin causes focal leaks by targeting claudins which are apically accessible due to tight junction derangement, J. Infect. Dis, vol.217, pp.147-157, 2017.

J. Zhang, C. Ni, Z. Yang, A. Piontek, H. Chen et al., Specific binding of Clostridium perfringens enterotoxin fragment to claudin-b and modulation of zebrafish epidermal barrier, Exp. Dermatol, vol.24, pp.605-610, 2015.

N. Sonoda, M. Furuse, H. Sasaki, S. Yonemura, J. Katahira et al., Clostridium perfringens enterotoxin fragment removes specific claudin from tight junction strands: Evidence for direct involvement of claudin in tight junction barrier, J. Cell Biol, vol.147, pp.195-204, 1999.

T. Shinoda, N. Shinya, K. Ito, N. Ohsawa, T. Terada et al., Structural basis for disruption of claudin assembly in tight junctions by an enterotoxin, Sci. Rep, vol.6, 2016.

D. C. Briggs, C. E. Naylor, J. G. Smedley, N. Lukoyanova, S. Robertson et al., Structure of the food-poisoning Clostridium perfringens enterotoxin reveals similarity to the aerolysin-like pore-forming toxins, J. Mol. Biol, vol.413, pp.138-149, 2011.

K. Kitadokoro, K. Nishimura, S. Kamitani, A. Fukui-miyazaki, H. Toshima et al., Crystal structure of Clostridium perfringens enterotoxin displays features of beta-pore-forming toxins, J. Biol. Chem, vol.286, 2011.

J. G. Smedley, F. A. Uzal, and B. A. Mcclane, Identification of a prepore large-complex stage in the mechanism of action of Clostridium perfringens enterotoxin, Infect. Immun, vol.75, pp.2381-2390, 2007.

J. Chen, J. R. Theoret, A. Shrestha, J. G. Smedley, and B. A. Mcclane, Cysteine-scanning mutagenesis supports the importance of Clostridium perfringens enterotoxin amino acids 80 to 106 for membrane insertion and pore formation, Infect. Immun, vol.80, pp.4078-4088, 2012.

S. P. Hardy, C. Ritchie, M. C. Allen, R. H. Ashley, and P. E. Granum, Clostridium perfringens type A enterotoxin forms mepacrine-sensitive pores in pure phospholipid bilayers in the absence of putative receptor proteins, Biochim. Biophys. Acta, vol.1515, pp.38-43, 2001.

N. Sugimoto, M. Takagi, K. Ozutsumi, S. Harada, and M. Matsuda, Enterotoxin of Clostridium perfringens type A forms ion-permeable channels in a lipid bilayer membrane, Biochem. Biophys. Res. Commun, vol.156, pp.551-556, 1988.

S. P. Hardy, M. Denmead, N. Parekh, and P. E. Granum, Cationic currents induced by Clostridium perfringens type a enterotoxin in human intestinal caco-2 cells, J. Med. Microbiol, vol.48, pp.235-243, 1999.

F. G. Riess, T. Lichtinger, R. Cseh, A. F. Yassin, K. P. Schaal et al., The cell wall porin of Nocardia farcinica: Biochemical identification of the channel-forming protein and biophysical characterization of the channel properties, Mol. Microbiol, vol.29, pp.139-150, 1998.

J. Trias and R. Benz, Characterization of the channel formed by the mycobacterial porin in lipid bilayer membranes. Demonstration of voltage gating and of negative point charges at the channel mouth, J. Biol. Chem, vol.268, pp.6234-6240, 1993.

R. Benz, E. Maier, D. Ladant, A. Ullmann, and P. Sebo, Adenylate cyclase toxin (cyaa) of Bordetella pertussis. Evidence for the formation of small ion-permeable channels and comparison with hlya of Escherichia coli, J. Biol. Chem, vol.269, pp.27231-27239, 1994.

D. Hu, S. Sugii, H. Kusunoki, and T. Uemura, Flow cytometric assay for cytotoxic activity of crude Clostridium perfringens enterotoxin using non-adherent cell fm3a, FEMS Immunol. Med. Microbiol, vol.12, pp.239-244, 1995.

L. Petit, E. Maier, M. Gibert, M. R. Popoff, and R. Benz, Clostridium perfringens epsilon-toxin induces a rapid change in cell membrane permeability to ions and forms channels in artificial lipid bilayers, J. Biol. Chem, vol.276, pp.15736-15740, 2001.
URL : https://hal.archives-ouvertes.fr/pasteur-01811229

R. Benz, Solute uptake through bacterial outer membrane, Bacterial Cell Wall

J. M. Ghuyen and R. Hakenbeck, , pp.397-423, 1994.

R. Benz, K. Janko, and P. Läuger, Ionic selectivity of pores formed by the matrix protein (porin) of Escherichia coli, Biochim. Biophys. Acta, vol.551, pp.238-247, 1979.

R. Benz, A. Schmid, W. Wagner, and W. Goebel, Pore formation by the Escherichia coli hemolysin: Evidence for an association-dissociation equilibrium of the pore-forming aggregates, Infect. Immun, vol.57, pp.887-895, 1989.

A. Schmid, R. Benz, I. Just, and K. Aktories, Interaction of Clostridium botulinum C2 toxin with lipid bilayer membranes, J. Biol. Chem, vol.269, pp.16706-16711, 1994.

A. R. Cole, M. Gibert, M. R. Popoff, D. S. Moss, R. W. Titball et al., Clostridium perfringens ?-toxin shows structural similarity to the pore-forming toxin aerolysin, Nat. Struct. Mol. Biol, vol.11, pp.797-798, 2004.

O. Knapp, R. Benz, and M. R. Popoff, Pore-forming activity of clostridial binary toxins, Biochim. Biophys. Acta, vol.1858, pp.512-525, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01798115

F. Orlik, B. Schiffler, and R. Benz, Anthrax toxin protective antigen: Inhibition of channel function by chloroquine and related compounds and study of binding kinetics using the current noise analysis, Biophys. J, vol.88, pp.1715-1724, 2005.

A. P. Nelson and D. A. Mcquarrie, The effect of discrete charges on the electrical properties of a membrane. I, J. Theor. Biol, vol.55, pp.13-27, 1975.

M. R. Popoff, Clostridial pore-forming toxins: Powerful virulence factors, Anaerobe, vol.30, pp.220-238, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01797567

M. Podobnik, M. Kisovec, and G. Anderluh, Molecular mechanism of pore formation by aerolysin-like proteins, Philos. Trans. R. Soc. Lond. B Biol. Sci, vol.372, 2017.

O. Knapp, E. Maier, R. Benz, B. Geny, and M. R. Popoff, Identification of the channel-forming domain of Clostridium perfringens epsilon-toxin (etx), Biochim. Biophys. Acta, vol.1788, pp.2584-2593, 2009.

T. Chakraborty, A. Schmid, S. Notermans, and R. Benz, Aerolysin of Aeromonas sobria: Evidence for the formation of ion-permeable channels and comparison with alpha-toxin of Staphylococcus aureus, Infect. Immun, vol.58, pp.2127-2132, 1990.

L. Song, M. R. Hobaugh, C. Shustak, S. Cheley, H. Bayley et al., Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore, Science, vol.274, pp.1859-1866, 1996.

M. Bokori-brown, C. G. Savva, S. P. Fernandes-da-costa, C. E. Naylor, A. K. Basak et al., Molecular basis of toxicity of Clostridium perfringens epsilon toxin, FEBS J, vol.278, pp.4589-4601, 2011.

M. B. Hang'ombe, M. Mukamoto, T. Kohda, N. Sugimoto, and S. Kozaki, Cytotoxicity of Clostridium septicum alpha-toxin: Its oligomerization in detergent resistant membranes of mammalian cells, Microb. Pathog, vol.37, pp.279-286, 2004.

O. Knapp, E. Maier, S. B. Mkaddem, R. Benz, M. Bens et al., Clostridium septicum alpha-toxin forms pores and induces rapid cell necrosis, vol.55, pp.61-72, 2010.
URL : https://hal.archives-ouvertes.fr/pasteur-01509604

M. T. Degiacomi, I. Iacovache, L. Pernot, M. Chami, M. Kudryashev et al., Molecular assembly of the aerolysin pore reveals a swirling membrane-insertion mechanism, Nat. Chem. Biol, vol.9, pp.623-629, 2013.

T. S. Yelland, C. E. Naylor, T. Bagoban, C. G. Savva, D. S. Moss et al., Structure of a C. perfringens enterotoxin mutant in complex with a modified claudin-2 extracellular loop 2, J. Mol. Biol, vol.426, pp.3134-3147, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01767861

R. Benz, K. Janko, W. Boos, and P. Läuger, Formation of large, ion-permeable membrane channels by the matrix protein (porin) of Escherichia coli, Biochim. Biophys. Acta, vol.511, pp.305-319, 1978.

L. Petit, M. Gibert, D. Gillet, C. Laurent-winter, P. Boquet et al., Clostridium perfringens epsilon-toxin acts on mdck cells by forming a large membrane complex, J. Bacteriol, vol.179, pp.6480-6487, 1997.