K. M. Aagaard, A. Lahon, M. A. Suter, R. P. Arya, M. D. Seferovic et al., Primary Human Placental Trophoblasts are Permissive for Zika Virus, ZIKV) Replication. Sci Rep, vol.7, p.41389, 2017.

K. Benirschke, G. R. Mendoza, and P. L. Bazeley, Placental and fetal manifestations of cytomegalovirus infection, Virchows Arch B Cell Pathol, vol.16, issue.2, pp.121-160, 1974.

M. Besnard, D. Eyrolle-guignot, G. , P. Lastère, S. Bost-bezeaud et al., Congenital cerebral malformations and dysfunction in fetuses and newborns following the 2013 to 2014 Zika virus epidemic in French Polynesia, Euro Surveill Bull Eur Sur Mal Transm Eur Commun Dis Bull, vol.21, issue.13, 2016.

J. Bhatnagar, D. B. Rabeneck, R. B. Martines, S. Reagan-steiner, Y. Ermias et al., Zika Virus RNA Replication and Persistence in Brain and Placental Tissue, Emerg Infect Dis, vol.23, issue.3, pp.405-419, 2017.

A. Blázquez and J. Saiz, Neurological manifestations of Zika virus infection, World J Virol, vol.5, issue.4, pp.135-178, 2016.

P. Brasil, J. P. Pereira, M. E. Moreira, R. Nogueira, R. M. Damasceno et al., Zika Virus Infection in Pregnant Women in Rio de Janeiro, N Engl J Med, vol.375, issue.24, pp.2321-2355, 2016.

F. Carvalho, K. M. Cordeiro, A. B. Peixoto, G. Tonni, A. F. Moron et al., Associated ultrasonographic findings in fetuses with microcephaly because of suspected Zika virus (ZIKV) infection during pregnancy, Prenat Diagn, vol.36, issue.9, pp.882-889, 2016.

E. Cau, G. Gradwohl, C. Fode, and F. Guillemot, Mash1 activates a cascade of bHLH regulators in olfactory neuron progenitors, Dev Camb Engl, vol.124, issue.8, pp.1611-1632, 1997.

S. Cauchemez, M. Besnard, P. Bompard, T. Dub, G. et al., Association between Zika virus and microcephaly in French Polynesia, 2013-15: a retrospective study, Lancet Lond Engl, vol.387, pp.2125-2157, 2016.

P. L. Chavali, L. Stojic, L. W. Meredith, N. Joseph, M. S. Nahorski et al., Neurodevelopmental protein Musashi-1 interacts with the Zika genome and promotes viral replication, Science, vol.357, issue.6346, pp.83-91, 2017.

L. Chimelli, A. Melo, E. Avvad-portari, C. A. Wiley, A. Camacho et al., The spectrum of neuropathological changes associated with congenital Zika virus infection, Acta Neuropathol, vol.133, issue.6, pp.983-99, 2017.

R. W. Driggers, C. Ho, E. M. Korhonen, S. Kuivanen, A. J. Jääskeläinen et al.,

, Zika Virus Infection with Prolonged Maternal Viremia and Fetal Brain Abnormalities, N Engl J Med, vol.374, issue.22, pp.2142-51, 2016.

C. Eppes, M. Rac, J. Dunn, J. Versalovic, K. O. Murray et al., Testing for Zika virus infection in pregnancy: key concepts to deal with an emerging epidemic, Am J Obstet Gynecol, vol.216, issue.3, pp.209-234, 2017.

A. G. Garcia, R. L. Marques, Y. Y. Lobato, M. E. Fonseca, and M. D. Wigg, Placental pathology in congenital rubella, Placenta, vol.6, issue.4, pp.281-95, 1985.

I. Gladwyn-ng, L. Cordón-barris, C. Alfano, C. Creppe, T. Couderc et al., Stress-induced unfolded protein response contributes to Zika virus-associated microcephaly, Nat Neurosci, vol.21, issue.1, pp.63-71, 2018.
URL : https://hal.archives-ouvertes.fr/pasteur-01741181

J. Govero, P. Esakky, S. M. Scheaffer, E. Fernandez, A. Drury et al., Zika virus infection damages the testes in mice, Nature, vol.15, issue.7633, pp.438-480, 2016.

A. M. Guihard-costa, J. C. Larroche, P. Droullé, F. Narcy, and . Biometry, Growth charts for practical use in fetopathology and antenatal ultrasonography. Introduction, Fetal Diagn Ther, vol.10, issue.4, pp.211-78, 1995.

M. A. Honein, A. L. Dawson, E. E. Petersen, A. M. Jones, E. H. Lee et al., Birth Defects Among Fetuses and Infants of US Women With Evidence of Possible Zika Virus Infection During Pregnancy, JAMA, vol.317, issue.1, pp.59-68, 2017.

G. Joguet, J. Mansuy, G. Matusali, S. Hamdi, M. Walschaerts et al., Effect of acute Zika virus infection on sperm and virus clearance in body fluids: a prospective observational study, Lancet Infect Dis, vol.17, issue.11, pp.1200-1208, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01647078

S. Laguesse, C. Creppe, D. D. Nedialkova, P. P. Prévot, L. Borgs et al., A Dynamic Unfolded Protein Response Contributes to the Control of Cortical Neurogenesis, Dev Cell, vol.35, issue.5, pp.553-67, 2015.

H. Li, L. Saucedo-cuevas, J. A. Regla-nava, G. Chai, N. Sheets et al., Zika Virus Infects Neural Progenitors in the Adult Mouse Brain and Alters Proliferation, Cell Stem Cell, vol.19, issue.5, pp.593-601, 2016.

O. Melo-as-de, R. S. Aguiar, M. Amorim, M. B. Arruda, O. Melo-f-de et al., Congenital Zika Virus Infection: Beyond Neonatal Microcephaly, JAMA Neurol, vol.73, issue.12, pp.1407-1423, 2016.

E. Merfeld, L. Ben-avi, M. Kennon, and K. L. Cerveny, Potential mechanisms of Zika-linked microcephaly, Wiley Interdiscip Rev Dev Biol, vol.6, issue.4, 2017.

M. C. Mladinich, J. Schwedes, and E. R. Mackow, Zika Virus Persistently Infects and Is Basolaterally Released from Primary Human Brain Microvascular Endothelial Cells, vol.8, 2017.

J. Mlakar, M. Korva, N. Tul, M. Popovi?, M. Polj?ak-prijatelj et al., Zika Virus Associated with Microcephaly, N Engl J Med, vol.374, issue.10, pp.951-959, 2016.

. Noronha-l-de, C. Zanluca, M. Azevedo, K. G. Luz, and C. Santos, Zika virus damages the human placental barrier and presents marked fetal neurotropism, Mem Inst Oswaldo Cruz, vol.111, issue.5, pp.287-93, 2016.

L. Pomar, G. Malinger, G. Benoist, G. Carles, Y. Ville et al., Association between Zika virus and fetopathy: a prospective cohort study in French Guiana

, Ultrasound Obstet Gynecol Off J Int Soc Ultrasound Obstet Gynecol, vol.49, issue.6, pp.729-765, 2017.

M. Ogata, S. Hino, A. Saito, K. Morikawa, S. Kondo et al., Autophagy is activated for cell survival after endoplasmic reticulum stress, Mol Cell Biol, 2006.

K. M. Quicke, J. R. Bowen, E. L. Johnson, C. E. Mcdonald, H. Ma et al., Zika Virus Infects Human Placental Macrophages, Cell Host Microbe, vol.20, issue.1, pp.83-90, 2016.

A. Z. Rosenberg, W. Yu, D. A. Hill, C. A. Reyes, and D. A. Schwartz, Placental Pathology of Zika Virus: Viral Infection of the Placenta Induces Villous Stromal Macrophage (Hofbauer Cell) Proliferation and Hyperplasia, Arch Pathol Lab Med, vol.141, issue.1, pp.43-51, 2017.

M. Sarno, M. Aquino, K. Pimentel, R. Cabral, G. Costa et al., Progressive lesions of Central Nervous System in microcephalic fetuses with suspected congenital Zika virus syndrome, Ultrasound Obstet Gynecol Off J Int Soc Ultrasound Obstet Gynecol, vol.50, issue.6, pp.717-722, 2016.

B. Schaub, M. Vouga, F. Najioullah, M. Gueneret, A. Monthieux et al., Analysis of blood from Zika virus-infected fetuses: a prospective case series, Lancet Infect Dis, vol.17, issue.5, pp.520-527, 2017.

D. A. Schwartz, Autopsy and Postmortem Studies Are Concordant: Pathology of Zika Virus Infection Is Neurotropic in Fetuses and Infants With Microcephaly Following Transplacental Transmission, Arch Pathol Lab Med, vol.141, issue.1, pp.68-72, 2017.

Z. Sheng, N. Gao, Z. Wang, X. Cui, D. Zhou et al., Sertoli Cells Are Susceptible to ZIKV Infection in Mouse Testis, Front Cell Infect Microbiol, vol.7, pp.272-295, 2017.

H. Tang, C. Hammack, S. C. Ogden, Z. Wen, X. Qian et al., Zika Virus Infects Human Cortical Neural Progenitors and Attenuates Their Growth, Cell Stem Cell, vol.18, issue.5, pp.587-90, 2016.

N. Teissier, C. Fallet-bianco, A. Delezoide, A. Laquerrière, P. Marcorelles et al., Cytomegalovirus-induced brain malformations in fetuses, J Neuropathol Exp Neurol, vol.73, issue.2, pp.143-58, 2014.

A. A. Van-der-eijk, P. J. Van-genderen, R. M. Verdijk, C. B. Reusken, R. Mögling et al., Miscarriage Associated with Zika Virus Infection, N Engl J Med, vol.375, issue.10, pp.1002-1006, 2016.

P. Walter and R. D. , The unfolded protein response: from stress pathway to homeostatic regulation, Science, vol.334, issue.6059, pp.1081-1087, 2011.

, Public Health Emergency of International Concern, WHO | Zika virus and complications, 2016.

I. , Cerebral cortex case 2 (high magnification, H&E): Neuronal rarefaction, apoptotic bodies (arrow)

J. Case, Inflammatory infiltrate in the arachnoid composed of numerous macrophages and lymphocytes (H&E), vol.3

. Immunohistochemistry,

K. M. , Anti CD68: macrophagic reaction in the wall of cerebral hemisphere, mainly around the necrotic zones in case 1 (magnified field) and 2

O. P. , Anti CD3: T lymphocytes are less numerous than macrophages but are also found in all cerebral areas and mainly around necrotic zones

R. S. , Anti CD20: few lymphocytes marked in the arachnoid

U. V. Anti-gfap-;-d, E. , F. , K. , M. et al., hyperplastic and hypertrophic astrocytes in cerebral parenchyma. Scale bar: 400 µm, p.40

, Figure 3. Histological and cellular analyses of ZIKV-infected brains

A. , situ hybridization on coronal sections from human fetus ZIKV-infected

A. , E. , I. , G. , and R. Cp, ZIKV-uninfected (D,control) with antisense (AS) and sense (S) RNA probes of Zikv (A-H) and chop ( I-L). B, F and H are the magnifications of insets in A

V. Vz and . Zone, ) ZIKV-infected fetal brain with an antibody specific for NS1 (non-structural protein 1 expressed by flaviviruses). M, O, P represent different dorsal regions of the cerebral cortex of case1 ZIKV-infected fetal brain. N is a magnification of the insets in M. NS1 is in Red and nuclei are labeled by Hoechst (blue). Q-S, transmission electronic micrographs of frontal cortical sample from the brain of the (case 1) ZIKV-infected fetus showing a cell with an autophagosome with an electron-dense 50 nm ZIKV particle (red square 1) and enlarged ER (red square 2) (Q), another one with enlarged ER, The black arrowhead indicates a single infected bipolar neuron migrating to the CP. M-P Immunolabeling of coronal sections from

A. , C. , D. , G. , H. et al., 40 µm (B), vol.100, p.50